File: test_ai_agents_instrumentor_async.py

package info (click to toggle)
python-azure 20250829%2Bgit-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 756,824 kB
  • sloc: python: 6,224,989; ansic: 804; javascript: 287; makefile: 198; sh: 195; xml: 109
file content (730 lines) | stat: -rw-r--r-- 30,914 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
# pylint: disable=line-too-long,useless-suppression
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
# cSpell:disable
import os
import json
import jsonref
import time
import pytest
from typing import Any, Callable, Dict, List, Optional, Set 
from azure.ai.agents.models import (
    AgentsResponseFormatMode,
    AgentsResponseFormat,
    AsyncAgentEventHandler,
    AsyncFunctionTool,
    McpTool,
    MessageDeltaChunk,
    MessageDeltaTextContent,
    OpenApiAnonymousAuthDetails,
    OpenApiTool,
    RequiredMcpToolCall,
    RunStatus,
    RunStep,
    RunStepActivityDetails,
    RunStepMcpToolCall,
    RunStepToolCallDetails,
    SubmitToolApprovalAction,
    ThreadMessage,
    ThreadRun,
    ToolApproval,
    AsyncToolSet,
    Tool,
)
from azure.ai.agents.telemetry._ai_agents_instrumentor import _AIAgentsInstrumentorPreview
from azure.ai.agents.telemetry import _utils
from azure.core.settings import settings
from gen_ai_trace_verifier import GenAiTraceVerifier
from azure.ai.agents.aio import AgentsClient

from devtools_testutils.aio import recorded_by_proxy_async

from test_agents_client_base import agentClientPreparer
from test_ai_instrumentor_base import TestAiAgentsInstrumentorBase

settings.tracing_implementation = "OpenTelemetry"
_utils._span_impl_type = settings.tracing_implementation()


class TestAiAgentsInstrumentor(TestAiAgentsInstrumentorBase):
    """Tests for AI agents instrumentor."""

    def create_client(self, **kwargs):
        """helper function: create client and using environment variables"""
        # fetch environment variables
        endpoint = kwargs.pop("azure_ai_agents_tests_project_endpoint")
        credential = self.get_credential(AgentsClient, is_async=False)

        # create and return client
        client = AgentsClient(
            endpoint=endpoint,
            credential=credential,
        )

        return client

    def test_convert_api_response_format_exception(self):
        """Test that the exception is raised if agent_api_response_to_str is given wrong type."""
        with pytest.raises(ValueError) as cm:
            _AIAgentsInstrumentorPreview.agent_api_response_to_str(42)
        assert "Unknown response format <class 'int'>" in cm.value.args[0]

    @pytest.mark.parametrize(
        "fmt,expected",
        [
            (None, None),
            ("neep", "neep"),
            (AgentsResponseFormatMode.AUTO, "auto"),
            (AgentsResponseFormat(type="test"), "test"),
        ],
    )
    def test_convert_api_response_format(self, fmt, expected):
        """Test conversion of AgentsResponseFormatOption to string"""
        actual = _AIAgentsInstrumentorPreview.agent_api_response_to_str(fmt)
        assert actual == expected

    @pytest.mark.usefixtures("instrument_with_content")
    @agentClientPreparer()
    @recorded_by_proxy_async
    async def test_agent_chat_with_tracing_content_recording_enabled(self, **kwargs):
        client = self.create_client(**kwargs)
        agent = await client.create_agent(model="gpt-4o-mini", name="my-agent", instructions="You are helpful agent")
        thread = await client.threads.create()
        await client.messages.create(thread_id=thread.id, role="user", content="Hello, tell me a joke")
        run = await client.runs.create(thread_id=thread.id, agent_id=agent.id)

        while run.status in ["queued", "in_progress", "requires_action"]:
            # wait for a second
            time.sleep(self._sleep_time())
            run = await client.runs.get(thread_id=thread.id, run_id=run.id)
            print("Run status:", run.status)
        print("Run completed with status:", run.status)

        # delete agent and close client
        await client.delete_agent(agent.id)
        print("Deleted agent")
        messages = [m async for m in client.messages.list(thread_id=thread.id)]
        assert len(messages) > 1
        await client.close()

        self.exporter.force_flush()
        spans = self.exporter.get_spans_by_name("create_agent my-agent")
        assert len(spans) == 1
        span = spans[0]
        expected_attributes = [
            ("gen_ai.system", "az.ai.agents"),
            ("gen_ai.operation.name", "create_agent"),
            ("server.address", ""),
            ("gen_ai.request.model", "gpt-4o-mini"),
            ("gen_ai.agent.name", "my-agent"),
            ("gen_ai.agent.id", ""),
        ]
        attributes_match = GenAiTraceVerifier().check_span_attributes(span, expected_attributes)
        assert attributes_match == True

        expected_events = [
            {
                "name": "gen_ai.system.message",
                "attributes": {
                    "gen_ai.system": "az.ai.agents",
                    "gen_ai.event.content": '{"content": "You are helpful agent"}',
                },
            }
        ]
        events_match = GenAiTraceVerifier().check_span_events(span, expected_events)
        assert events_match == True

        spans = self.exporter.get_spans_by_name("create_thread")
        assert len(spans) == 1
        span = spans[0]
        expected_attributes = [
            ("gen_ai.system", "az.ai.agents"),
            ("gen_ai.operation.name", "create_thread"),
            ("server.address", ""),
            ("gen_ai.thread.id", ""),
        ]
        attributes_match = GenAiTraceVerifier().check_span_attributes(span, expected_attributes)
        assert attributes_match == True

        spans = self.exporter.get_spans_by_name("create_message")
        assert len(spans) == 1
        span = spans[0]
        expected_attributes = [
            ("gen_ai.system", "az.ai.agents"),
            ("gen_ai.operation.name", "create_message"),
            ("server.address", ""),
            ("gen_ai.thread.id", ""),
            ("gen_ai.message.id", ""),
        ]
        attributes_match = GenAiTraceVerifier().check_span_attributes(span, expected_attributes)
        assert attributes_match == True

        expected_events = [
            {
                "name": "gen_ai.user.message",
                "attributes": {
                    "gen_ai.system": "az.ai.agents",
                    "gen_ai.thread.id": "*",
                    "gen_ai.event.content": '{"content": "Hello, tell me a joke", "role": "user"}',
                },
            }
        ]
        events_match = GenAiTraceVerifier().check_span_events(span, expected_events)
        assert events_match == True

        spans = self.exporter.get_spans_by_name("start_thread_run")
        assert len(spans) == 1
        span = spans[0]
        expected_attributes = [
            ("gen_ai.system", "az.ai.agents"),
            ("gen_ai.operation.name", "start_thread_run"),
            ("server.address", ""),
            ("gen_ai.thread.id", ""),
            ("gen_ai.thread.run.id", ""),
            ("gen_ai.agent.id", ""),
            ("gen_ai.thread.run.id", ""),
            ("gen_ai.thread.run.status", "queued"),
            ("gen_ai.response.model", "gpt-4o-mini"),
        ]
        attributes_match = GenAiTraceVerifier().check_span_attributes(span, expected_attributes)
        assert attributes_match == True

        spans = self.exporter.get_spans_by_name("get_thread_run")
        assert len(spans) >= 1
        span = spans[-1]
        expected_attributes = [
            ("gen_ai.system", "az.ai.agents"),
            ("gen_ai.operation.name", "get_thread_run"),
            ("server.address", ""),
            ("gen_ai.thread.id", ""),
            ("gen_ai.thread.run.id", ""),
            ("gen_ai.agent.id", ""),
            ("gen_ai.thread.run.status", "completed"),
            ("gen_ai.response.model", "gpt-4o-mini"),
            ("gen_ai.usage.input_tokens", "+"),
            ("gen_ai.usage.output_tokens", "+"),
        ]
        attributes_match = GenAiTraceVerifier().check_span_attributes(span, expected_attributes)
        assert attributes_match == True

        spans = self.exporter.get_spans_by_name("list_messages")
        assert len(spans) == 2
        span = spans[0]
        expected_attributes = [
            ("gen_ai.system", "az.ai.agents"),
            ("gen_ai.operation.name", "list_messages"),
            ("server.address", ""),
            ("gen_ai.thread.id", ""),
        ]
        attributes_match = GenAiTraceVerifier().check_span_attributes(span, expected_attributes)
        assert attributes_match == True
        expected_events = [
            {
                "name": "gen_ai.assistant.message",
                "timestamp": "*",
                "attributes": {
                    "gen_ai.system": "az.ai.agents",
                    "gen_ai.thread.id": "*",
                    "gen_ai.agent.id": "*",
                    "gen_ai.thread.run.id": "*",
                    "gen_ai.message.id": "*",
                    "gen_ai.event.content": '{"content": {"text": {"value": "*"}}, "role": "assistant"}',
                },
            },
        ]
        events_match = GenAiTraceVerifier().check_span_events(span, expected_events)
        assert events_match == True

        span = spans[1]
        attributes_match = GenAiTraceVerifier().check_span_attributes(span, expected_attributes)
        assert attributes_match == True
        expected_events = [
            {
                "name": "gen_ai.user.message",
                "attributes": {
                    "gen_ai.system": "az.ai.agents",
                    "gen_ai.thread.id": "*",
                    "gen_ai.message.id": "*",
                    "gen_ai.event.content": '{"content": {"text": {"value": "Hello, tell me a joke"}}, "role": "user"}',
                },
            },
        ]
        events_match = GenAiTraceVerifier().check_span_events(span, expected_events)
        assert events_match == True

    @pytest.mark.usefixtures("instrument_without_content")
    @agentClientPreparer()
    @recorded_by_proxy_async
    async def test_agent_chat_with_tracing_content_recording_disabled(self, **kwargs):
        client = self.create_client(**kwargs)
        agent = await client.create_agent(model="gpt-4o-mini", name="my-agent", instructions="You are helpful agent")
        thread = await client.threads.create()
        await client.messages.create(thread_id=thread.id, role="user", content="Hello, tell me a joke")
        run = await client.runs.create(thread_id=thread.id, agent_id=agent.id)

        while run.status in ["queued", "in_progress", "requires_action"]:
            # wait for a second
            time.sleep(self._sleep_time())
            run = await client.runs.get(thread_id=thread.id, run_id=run.id)
            print("Run status:", run.status)
        print("Run completed with status:", run.status)

        # delete agent and close client
        await client.delete_agent(agent.id)
        print("Deleted agent")
        message_async = client.messages.list(thread_id=thread.id)
        messages = [m async for m in message_async]
        assert len(messages) > 1
        await client.close()

        self.exporter.force_flush()
        spans = self.exporter.get_spans_by_name("create_agent my-agent")
        assert len(spans) == 1
        span = spans[0]
        expected_attributes = [
            ("gen_ai.system", "az.ai.agents"),
            ("gen_ai.operation.name", "create_agent"),
            ("server.address", ""),
            ("gen_ai.request.model", "gpt-4o-mini"),
            ("gen_ai.agent.name", "my-agent"),
            ("gen_ai.agent.id", ""),
        ]
        attributes_match = GenAiTraceVerifier().check_span_attributes(span, expected_attributes)
        assert attributes_match == True

        expected_events = [
            {
                "name": "gen_ai.system.message",
                "attributes": {
                    "gen_ai.system": "az.ai.agents",
                    "gen_ai.event.content": "{}",
                },
            }
        ]
        events_match = GenAiTraceVerifier().check_span_events(span, expected_events)
        assert events_match == True

        spans = self.exporter.get_spans_by_name("create_thread")
        assert len(spans) == 1
        span = spans[0]
        expected_attributes = [
            ("gen_ai.system", "az.ai.agents"),
            ("gen_ai.operation.name", "create_thread"),
            ("server.address", ""),
            ("gen_ai.thread.id", ""),
        ]
        attributes_match = GenAiTraceVerifier().check_span_attributes(span, expected_attributes)
        assert attributes_match == True

        spans = self.exporter.get_spans_by_name("create_message")
        assert len(spans) == 1
        span = spans[0]
        expected_attributes = [
            ("gen_ai.system", "az.ai.agents"),
            ("gen_ai.operation.name", "create_message"),
            ("server.address", ""),
            ("gen_ai.thread.id", ""),
            ("gen_ai.message.id", ""),
        ]
        attributes_match = GenAiTraceVerifier().check_span_attributes(span, expected_attributes)
        assert attributes_match == True

        expected_events = [
            {
                "name": "gen_ai.user.message",
                "attributes": {
                    "gen_ai.system": "az.ai.agents",
                    "gen_ai.thread.id": "*",
                    "gen_ai.event.content": '{"role": "user"}',
                },
            }
        ]
        events_match = GenAiTraceVerifier().check_span_events(span, expected_events)
        assert events_match == True

        spans = self.exporter.get_spans_by_name("start_thread_run")
        assert len(spans) == 1
        span = spans[0]
        expected_attributes = [
            ("gen_ai.system", "az.ai.agents"),
            ("gen_ai.operation.name", "start_thread_run"),
            ("server.address", ""),
            ("gen_ai.thread.id", ""),
            ("gen_ai.thread.run.id", ""),
            ("gen_ai.agent.id", ""),
            ("gen_ai.thread.run.id", ""),
            ("gen_ai.thread.run.status", "queued"),
            ("gen_ai.response.model", "gpt-4o-mini"),
        ]
        attributes_match = GenAiTraceVerifier().check_span_attributes(span, expected_attributes)
        assert attributes_match == True

        spans = self.exporter.get_spans_by_name("list_messages")
        assert len(spans) == 2
        span = spans[0]
        expected_attributes = [
            ("gen_ai.system", "az.ai.agents"),
            ("gen_ai.operation.name", "list_messages"),
            ("server.address", ""),
            ("gen_ai.thread.id", ""),
        ]
        attributes_match = GenAiTraceVerifier().check_span_attributes(span, expected_attributes)
        assert attributes_match == True
        expected_events = [
            {
                "name": "gen_ai.assistant.message",
                "timestamp": "*",
                "attributes": {
                    "gen_ai.system": "az.ai.agents",
                    "gen_ai.thread.id": "*",
                    "gen_ai.agent.id": "*",
                    "gen_ai.thread.run.id": "*",
                    "gen_ai.message.id": "*",
                    "gen_ai.event.content": '{"role": "assistant"}',
                },
            },
        ]
        events_match = GenAiTraceVerifier().check_span_events(span, expected_events)
        assert events_match == True

        span = spans[1]
        attributes_match = GenAiTraceVerifier().check_span_attributes(span, expected_attributes)
        assert attributes_match == True
        expected_events = [
            {
                "name": "gen_ai.user.message",
                "attributes": {
                    "gen_ai.system": "az.ai.agents",
                    "gen_ai.thread.id": "*",
                    "gen_ai.message.id": "*",
                    "gen_ai.event.content": '{"role": "user"}',
                },
            },
        ]
        events_match = GenAiTraceVerifier().check_span_events(span, expected_events)
        assert events_match == True

    def _get_function_toolset(self):
        """Get a function toolset."""
        def fetch_weather(location: str) -> str:
            """
            Fetches the weather information for the specified location.

            :param location (str): The location to fetch weather for.
            :return: Weather information as a JSON string.
            :rtype: str
            """
            # In a real-world scenario, you'd integrate with a weather API.
            # Here, we'll mock the response.
            mock_weather_data = {"New York": "Sunny", "London": "Cloudy", "Tokyo": "Rainy"}
            weather = mock_weather_data.get(location, "Weather data not available for this location.")
            weather_json = json.dumps({"weather": weather})
            return weather_json

        user_functions: Set[Callable[..., Any]] = {
            fetch_weather,
        }

        functions = AsyncFunctionTool(user_functions)
        toolset = AsyncToolSet()
        toolset.add(functions)
        return toolset

    @pytest.mark.usefixtures("instrument_with_content")
    @agentClientPreparer()
    @recorded_by_proxy_async
    async def test_agent_streaming_with_toolset_with_tracing_content_recording_enabled(self, **kwargs):
        """Test running functions with streaming and tracing content recording."""
        await self._do_test_run_steps_with_toolset_with_tracing_content_recording(
            toolset=self._get_function_toolset(),
            model="gpt-4o",
            use_stream=True,
            message="What is the weather in New York?",
            recording_enabled=True,
            tool_message_attribute_content='{\\"weather\\": \\"Sunny\\"}',
            event_contents=[
                '{"tool_calls": [{"id": "*", "type": "function", "function": {"name": "fetch_weather", "arguments": {"location": "New York"}}}]}',
                '{"content": {"text": {"value": "*"}}, "role": "assistant"}'
            ],
            have_submit_tools=True,
            run_step_events=self.get_expected_fn_spans(True),
            **kwargs
        )

    async def _do_test_run_steps_with_toolset_with_tracing_content_recording(
            self,
            model: str,
            message: str,
            use_stream: bool,
            recording_enabled: bool,
            tool_message_attribute_content: str,
            event_contents: List[str],
            instructions: str = "You are helpful agent",
            toolset: Optional[AsyncToolSet] = None,
            tool: Optional[Tool] = None,
            have_submit_tools=False,
            run_step_events: List[List[Dict[str, Any]]] = None,
            has_annotations: bool = False,
            **kwargs
        ):
        """The helper method to check the recordings."""
        client = self.create_client(**kwargs)
        if toolset is None == tool is None:
            raise ValueError("Please provide at lease one of toolset or tool, but not both.")
        elif toolset is not None:
            agent = await client.create_agent(
                model=model, name="my-agent", instructions=instructions, toolset=toolset
            )
    
            # workaround for https://github.com/Azure/azure-sdk-for-python/issues/40086
            client.enable_auto_function_calls(toolset)
        elif tool is not None:
            agent = await client.create_agent(
                model=model, name="my-agent", instructions=instructions,
                tools=tool.definitions,
                tool_resources=tool.resources,
            )

        thread = await client.threads.create()
        await client.messages.create(thread_id=thread.id, role="user", content=message)

        if use_stream:
            event_handler = MyEventHandler()
            async with await client.runs.stream(thread_id=thread.id, agent_id=agent.id, event_handler=event_handler) as stream:
                await stream.until_done()
            run_id = event_handler.run_id
        else:
            run = await client.runs.create_and_process(thread_id=thread.id, agent_id=agent.id, polling_interval=self._sleep_time())
            assert run.status != RunStatus.FAILED, run.last_error
            run_id = run.id

        # delete agent and close client
        await client.delete_agent(agent.id)
        print("Deleted agent")
        messages = [m async for m in client.messages.list(thread_id=thread.id)]
        assert len(messages) > 1
        steps = [step async for step in client.run_steps.list(thread_id=thread.id, run_id=run_id)]
        assert len(steps) >= 1
        await client.close()
        
        self.exporter.force_flush()
        self._check_spans(
            model=model,
            recording_enabled=recording_enabled,
            instructions=instructions,
            message=message,
            have_submit_tools=have_submit_tools,
            use_stream=use_stream,
            tool_message_attribute_content=tool_message_attribute_content,
            event_contents=event_contents,
            run_step_events=run_step_events,
            has_annotations=has_annotations,
        )

    @pytest.mark.usefixtures("instrument_without_content")
    @agentClientPreparer()
    @recorded_by_proxy_async
    async def test_agent_streaming_with_toolset_with_tracing_content_recording_disabled(self, **kwargs):
        await self._do_test_run_steps_with_toolset_with_tracing_content_recording(
            toolset=self._get_function_toolset(),
            model="gpt-4o",
            use_stream=True,
            message="What is the weather in New York?",
            recording_enabled=False,
            tool_message_attribute_content='{\\"weather\\": \\"Sunny\\"}',
            event_contents=[
                '{"tool_calls": [{"id": "*", "type": "function"}]}',
                '{"role": "assistant"}'
            ],
            have_submit_tools=True,
            run_step_events=self.get_expected_fn_spans(False),
            **kwargs
        )

    @pytest.mark.usefixtures("instrument_with_content")
    @agentClientPreparer()
    @recorded_by_proxy_async
    async def test_telemetry_steps_with_fn_tool(self, **kwargs):
        """Test running functions with streaming and tracing content recording."""
        await self._do_test_run_steps_with_toolset_with_tracing_content_recording(
            toolset=self._get_function_toolset(),
            model="gpt-4o",
            use_stream=False,
            message="What is the weather in New York?",
            recording_enabled=True,
            tool_message_attribute_content='{\\"weather\\": \\"Sunny\\"}',
            event_contents=[
                '{"tool_calls": [{"id": "*", "type": "function", "function": {"name": "fetch_weather", "arguments": {"location": "New York"}}}]}',
                '{"content": {"text": {"value": "*"}}, "role": "assistant"}'
            ],
            have_submit_tools=True,
            run_step_events=self.get_expected_fn_spans(True),
            **kwargs
        )

    @pytest.mark.usefixtures("instrument_with_content")
    @agentClientPreparer()
    @recorded_by_proxy_async
    async def test_telemetry_steps_with_openapi_tool(self, **kwargs):
        """Test run steps with OpenAPI."""
        weather_asset_file_path = os.path.join(os.path.dirname(__file__), "assets", "weather_openapi.json")
        auth = OpenApiAnonymousAuthDetails()
        with open(weather_asset_file_path, "r") as f:
            openapi_weather = jsonref.load(f)
        openapi_tool = OpenApiTool(
            name="get_weather",
            spec=openapi_weather,
            description="Retrieve weather information for a location",
            auth=auth,
        )
        await self._do_test_run_steps_with_toolset_with_tracing_content_recording(
            tool=openapi_tool,
            model="gpt-4o",
            use_stream=False,
            message="What is the weather in New York, NY?",
            recording_enabled=True,
            tool_message_attribute_content='',
            event_contents=[],
            run_step_events=self.get_expected_openapi_spans(),
            **kwargs)

    @pytest.mark.usefixtures("instrument_with_content")
    @agentClientPreparer()
    @recorded_by_proxy_async
    async def test_telemetry_steps_with_mcp_tool(self, **kwargs):
        """Test run steps with OpenAPI."""
        mcp_tool = McpTool(
            server_label="github",
            server_url="https://gitmcp.io/Azure/azure-rest-api-specs",
            allowed_tools=["search_azure_rest_api_code"],  # Optional: specify allowed tools
        )
        model = "gpt-4o"
        instructions = "You are a helpful agent that can use MCP tools to assist users. Use the available MCP tools to answer questions and perform tasks."
        recording_enabled = True
        message = "Please summarize the Azure REST API specifications Readme"
        async with self.create_client(**kwargs, by_endpoint=True) as agents_client:
            agent = await agents_client.create_agent(
                model=model,
                name="my-agent",
                instructions=instructions,
                tools=mcp_tool.definitions,
            )
            thread = await agents_client.threads.create()
            try:
                await agents_client.messages.create(
                    thread_id=thread.id,
                    role="user",
                    content=message,
                )
                mcp_tool.update_headers("SuperSecret", "123456")
                run = await agents_client.runs.create(thread_id=thread.id, agent_id=agent.id, tool_resources=mcp_tool.resources)
                was_approved = False
                while run.status in [RunStatus.QUEUED, RunStatus.IN_PROGRESS, RunStatus.REQUIRES_ACTION]:
                    time.sleep(self._sleep_time())
                    run = await agents_client.runs.get(thread_id=thread.id, run_id=run.id)
    
                    if run.status == RunStatus.REQUIRES_ACTION and isinstance(run.required_action, SubmitToolApprovalAction):
                        tool_calls = run.required_action.submit_tool_approval.tool_calls
                        assert tool_calls, "No tool calls to approve."
    
                        tool_approvals = []
                        for tool_call in tool_calls:
                            if isinstance(tool_call, RequiredMcpToolCall):
                                tool_approvals.append(
                                    ToolApproval(
                                        tool_call_id=tool_call.id,
                                        approve=True,
                                        headers=mcp_tool.headers,
                                    )
                                )
    
                        if tool_approvals:
                            was_approved = True
                            await agents_client.runs.submit_tool_outputs(
                                thread_id=thread.id, run_id=run.id, tool_approvals=tool_approvals
                            )
                assert was_approved, "The run was never approved."
                assert run.status != RunStatus.FAILED, run.last_error
    
                is_activity_step_found = False
                is_tool_call_step_found = False
                async for run_step in agents_client.run_steps.list(thread_id=thread.id, run_id=run.id):
                    if isinstance(run_step.step_details, RunStepActivityDetails):
                        is_activity_step_found = True
                    if isinstance(run_step.step_details, RunStepToolCallDetails):
                        for tool_call in run_step.step_details.tool_calls:
                            if isinstance(tool_call, RunStepMcpToolCall):
                                is_tool_call_step_found = True
                                break
                assert is_activity_step_found, "RunStepMcpToolCall was not found."
                assert is_tool_call_step_found, "No RunStepMcpToolCall"
                messages = [msg async for msg in agents_client.messages.list(thread_id=thread.id)]
                assert len(messages) > 1
            finally:
                await agents_client.threads.delete(thread.id)
                await agents_client.delete_agent(agent.id)
    
        self.exporter.force_flush()
        # Check the actual telemetry.
        self._check_spans(
            model=model,
            recording_enabled=recording_enabled,
            instructions=instructions,
            message=message,
            have_submit_tools=True,
            use_stream=False,
            tool_message_attribute_content="",
            event_contents=[],
            run_step_events=self.get_expected_mcp_spans(),
        )

    @pytest.mark.usefixtures("instrument_with_content")
    @agentClientPreparer()
    @recorded_by_proxy_async
    async def test_telemetry_steps_with_deep_research_tool(self, **kwargs):
        """Test running functions with streaming and tracing content recording."""        
        await self._do_test_run_steps_with_toolset_with_tracing_content_recording(
            tool=self._get_deep_research_tool(**kwargs),
            model="gpt-4o",
            use_stream=False,
            instructions="You are a helpful agent that assists in researching scientific topics.",
            message="Research the benefits of renewable energy sources. Keep the response brief.",
            recording_enabled=True,
            tool_message_attribute_content='',
            event_contents=[],
            have_submit_tools=False,
            run_step_events=self.get_expected_deep_research_spans(),
            has_annotations=True,
            **kwargs
        )

class MyEventHandler(AsyncAgentEventHandler):

    async def on_message_delta(self, delta: "MessageDeltaChunk") -> None:
        for content_part in delta.delta.content:
            if isinstance(content_part, MessageDeltaTextContent):
                text_value = content_part.text.value if content_part.text else "No text"
                print(f"Text delta received: {text_value}")

    async def on_thread_message(self, message: "ThreadMessage") -> None:
        print(f"ThreadMessage created. ID: {message.id}, Status: {message.status}")

    async def on_thread_run(self, run: "ThreadRun") -> None:
        print(f"ThreadRun status: {run.status}")
        self.run_id = run.id
        if run.status == "failed":
            print(f"Run failed. Error: {run.last_error}")

    async def on_run_step(self, step: "RunStep") -> None:
        print(f"RunStep type: {step.type}, Status: {step.status}")

    async def on_error(self, data: str) -> None:
        print(f"An error occurred. Data: {data}")

    async def on_done(self) -> None:
        print("Stream completed.")

    async def on_unhandled_event(self, event_type: str, event_data: Any) -> None:
        print(f"Unhandled Event Type: {event_type}, Data: {event_data}")