File: sample_agents_openapi_connection_auth.py

package info (click to toggle)
python-azure 20251014%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 766,472 kB
  • sloc: python: 6,314,744; ansic: 804; javascript: 287; makefile: 198; sh: 198; xml: 109
file content (108 lines) | stat: -rw-r--r-- 4,034 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# pylint: disable=line-too-long,useless-suppression
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_agents_openapi_connection_auth.py

DESCRIPTION:
    This sample demonstrates how to use agent operations with the
    OpenAPI tool from the Azure Agents service using a synchronous client, using
    custom key authentication against the TripAdvisor API.
    To learn more about OpenAPI specs, visit https://learn.microsoft.com/openapi

USAGE:
    python sample_agents_openapi_connection_auth.py

    Before running the sample:

    Set up an account at https://www.tripadvisor.com/developers and get an API key.

    Set up a custom key connection and save the connection name following the steps at
    https://aka.ms/azsdk/azure-ai-agents/custom-key-setup

    Save that connection name as the PROJECT_OPENAPI_CONNECTION_NAME environment variable

    pip install azure-ai-projects azure-ai-agents azure-identity jsonref

    Set this environment variables with your own values:
    PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the Overview
                       page of your Azure AI Foundry portal.
    PROJECT_OPENAPI_CONNECTION_NAME - the connection name for the OpenAPI connection, taken from Azure AI Foundry.
    MODEL_DEPLOYMENT_NAME - name of the model deployment in the project to use Agents against
"""

import os
import jsonref
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import (
    ListSortOrder,
    OpenApiTool,
    OpenApiConnectionAuthDetails,
    OpenApiConnectionSecurityScheme,
)

asset_file_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../assets/tripadvisor_openapi.json"))

project_client = AIProjectClient(
    endpoint=os.environ["PROJECT_ENDPOINT"],
    credential=DefaultAzureCredential(),
)

model_name = os.environ["MODEL_DEPLOYMENT_NAME"]
connection_id = project_client.connections.get(os.environ["PROJECT_OPENAPI_CONNECTION_NAME"]).id

print(connection_id)

with open(asset_file_path, "r") as f:
    openapi_spec = jsonref.loads(f.read())

# Create Auth object for the OpenApiTool (note that connection or managed identity auth setup requires additional setup in Azure)
auth = OpenApiConnectionAuthDetails(security_scheme=OpenApiConnectionSecurityScheme(connection_id=connection_id))

# Initialize an Agent OpenApi tool using the read in OpenAPI spec
openapi = OpenApiTool(
    name="get_weather", spec=openapi_spec, description="Retrieve weather information for a location", auth=auth
)

# Create an Agent with OpenApi tool and process Agent run
with project_client:
    agents_client = project_client.agents

    agent = agents_client.create_agent(
        model=model_name, name="my-agent", instructions="You are a helpful agent", tools=openapi.definitions
    )
    print(f"Created agent, ID: {agent.id}")

    # Create thread for communication
    thread = agents_client.threads.create()
    print(f"Created thread, ID: {thread.id}")

    # Create message to thread
    message = agents_client.messages.create(
        thread_id=thread.id,
        role="user",
        content="Summarize the reviews for the top rated hotel in Paris",
    )
    print(f"Created message: {message['id']}")

    # Create and process an Agent run in thread with tools
    run = agents_client.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)
    print(f"Run finished with status: {run.status}")

    if run.status == "failed":
        print(f"Run failed: {run.last_error}")

    # Delete the Agent when done
    agents_client.delete_agent(agent.id)
    print("Deleted agent")

    # Fetch and log all messages
    messages = agents_client.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING)
    for msg in messages:
        if msg.text_messages:
            last_text = msg.text_messages[-1]
            print(f"{msg.role}: {last_text.text.value}")