File: README.md

package info (click to toggle)
python-azure 20251014%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 766,472 kB
  • sloc: python: 6,314,744; ansic: 804; javascript: 287; makefile: 198; sh: 198; xml: 109
file content (414 lines) | stat: -rw-r--r-- 18,004 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
[![Build Status](https://dev.azure.com/azure-sdk/public/_apis/build/status/azure-sdk-for-python.client?branchName=main)](https://dev.azure.com/azure-sdk/public/_build/latest?definitionId=46?branchName=main)

# Azure Conversation Authoring client library for Python

**Conversation Authoring** is part of the Conversational Language Understanding (CLU) service. It provides APIs and SDKs to **create, manage, train, evaluate, and deploy** conversation projects and models. With the `ConversationAuthoringClient`, you can script everything you’d otherwise do in Language Studio, including:

- **Project management**: Create, update, export, and import projects.  
- **Training jobs**: Start, monitor, and cancel model training jobs.  
- **Evaluation**: Retrieve model evaluation summaries and per-utterance results.  
- **Deployments**: Create, update, swap, and delete deployments.  
- **Snapshots**: Load a trained model snapshot back into a project.  
- **Resource assignment**: Assign or unassign Azure resources to a deployment.  

[Source code][conversation_authoring_client_src]
| [Package (PyPI)][conversation_authoring_pypi_package]
| [API reference documentation][api_reference_authoring]
| [Samples][conversation_authoring_samples]
| [Product documentation][conversation_authoring_docs]
| [REST API documentation][conversation_authoring_restdocs]

## Getting started

### Prerequisites

* Python 3.7 or later is required to use this package.
* An [Azure subscription][azure_subscription]
* A [Language service resource][language_resource]

### Install the package

Install the Azure Conversation Authoring client library for Python with [pip][pip_link]:

```bash
pip install azure-ai-language-conversations-authoring
```

> Note: This version of the client library defaults to the 2025-05-15-preview version of the service

### Authenticate the client

To interact with the Conversation Authoring service, you'll need to create an instance of the `ConversationAuthoringClient`. You will need an **endpoint** and an **API key** to instantiate a client object. For more information regarding authenticating with Cognitive Services, see [Authenticate requests to Azure Cognitive Services][cognitive_auth].

#### Get an API key

You can get the **endpoint** and **API key** from your Cognitive Services resource in the [Azure Portal][azure_portal].

Alternatively, use the [Azure CLI][azure_cli] command shown below to get the API key from the Cognitive Service resource:

```powershell
az cognitiveservices account keys list --resource-group <resource-group-name> --name <resource-name>
```


#### Create ConversationAuthoringClient

Once you've determined your **endpoint** and **API key**, you can instantiate a `ConversationAuthoringClient`:

```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations.authoring import ConversationAuthoringClient

endpoint = "https://<my-custom-subdomain>.cognitiveservices.azure.com/"
credential = AzureKeyCredential("<api-key>")
client = ConversationAuthoringClient(endpoint, credential)
```

#### Create a client with an Azure Active Directory Credential

To use an [Azure Active Directory (AAD) token credential][cognitive_authentication_aad],  
provide an instance of the desired credential type obtained from the [azure-identity][azure_identity_credentials] library.

> Note: Regional endpoints do not support AAD authentication.  
> You must create a [custom subdomain][custom_subdomain] for your resource in order to use this type of authentication.

Authentication with AAD requires some initial setup:

- [Install azure-identity][install_azure_identity]  
- [Register a new AAD application][register_aad_app]  
- [Grant access][grant_role_access] to the Language service by assigning the **Cognitive Services Language Owner** role to your service principal  

After setup, you can choose which type of [credential][azure_identity_credentials] to use.  
As an example, [DefaultAzureCredential][default_azure_credential] can be used to authenticate the client:

Set the values of the client ID, tenant ID, and client secret of the AAD application as environment variables:  
`AZURE_CLIENT_ID`, `AZURE_TENANT_ID`, `AZURE_CLIENT_SECRET`

Use the returned token credential to authenticate the client:

```python
from azure.ai.language.conversations.authoring import ConversationAuthoringClient
from azure.identity import DefaultAzureCredential

credential = DefaultAzureCredential()
client = ConversationAuthoringClient(
    endpoint="https://<my-custom-subdomain>.cognitiveservices.azure.com/",
    credential=credential,
)
```

## Key concepts

### ConversationAuthoringClient

The `ConversationAuthoringClient` is the primary entry point for interacting with the Conversation Authoring service.  
It provides top-level APIs to **manage projects** (create, delete, list) and retrieve **project-scoped clients**.

You can call `get_project_client(project_name)` to obtain a `ConversationAuthoringProjectClient`, which exposes operations specific to a given project.

For asynchronous operations, an async version of the client is available in the `azure.ai.language.conversations.authoring.aio` namespace.

### ConversationAuthoringProjectClient

The `ConversationAuthoringProjectClient` is a **project-scoped client** returned by `ConversationAuthoringClient.get_project_client(project_name)`.  

It organizes project functionality into operation groups:

- **deployment** → [`DeploymentOperations`]: manage deployments (create, update, delete, swap).  
- **exported_model** → [`ExportedModelOperations`]: handle exported model operations.  
- **project** → [`ProjectOperations`]: manage project-level operations (train, import/export, cancel jobs, assign resources).  
- **trained_model** → [`TrainedModelOperations`]: interact with trained models (evaluation, snapshots, delete models).  

This separation ensures you can focus on project-level actions while still using the main `ConversationAuthoringClient` for higher-level management.

## Examples

The `azure-ai-language-conversations-authoring` client library provides both **synchronous** and **asynchronous** APIs.

The following examples show common **Conversation Authoring** scenarios using the `ConversationAuthoringClient` or `ConversationAuthoringProjectClient` (created above).

### Create a Conversation Project

```python
# import libraries
import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations.authoring import ConversationAuthoringClient
from azure.ai.language.conversations.authoring.models import CreateProjectOptions, ProjectKind

# get secrets
endpoint = os.environ["AZURE_CONVERSATIONS_AUTHORING_ENDPOINT"]
key = os.environ["AZURE_CONVERSATIONS_AUTHORING_KEY"]

project_name = os.environ.get("PROJECT_NAME", "<project-name>")

# create client
client = ConversationAuthoringClient(endpoint, AzureKeyCredential(key))

# create project
body = CreateProjectOptions(
    project_kind=ProjectKind.CONVERSATION,
    project_name=project_name,
    language="<language-tag>",  # e.g. "en-us"
    multilingual=True,
    description="Sample project created via Python SDK",
)

# create project
result = client.create_project(project_name=project_name, body=body)

# print project details (direct attribute access; no getattr)
print("=== Create Project Result ===")
print(f"Project Name: {result.project_name}")
print(f"Language: {result.language}")
print(f"Kind: {result.project_kind}")
print(f"Multilingual: {result.multilingual}")
print(f"Description: {result.description}")
```

### Import a Project

```python
import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations.authoring import ConversationAuthoringClient
from azure.ai.language.conversations.authoring.models import (
    ExportedProject, CreateProjectOptions, ProjectKind, ProjectSettings
)

endpoint = os.environ["AZURE_CONVERSATIONS_AUTHORING_ENDPOINT"]
key = os.environ["AZURE_CONVERSATIONS_AUTHORING_KEY"]
project_name = os.environ.get("PROJECT_NAME", "<project-name>")

client = ConversationAuthoringClient(endpoint, AzureKeyCredential(key))
project_client = client.get_project_client(project_name)

# Build assets using objects
intents = [
    ConversationExportedIntent(category="<intent-a>"),
    ConversationExportedIntent(category="<intent-b>"),
]

entities = [
    ConversationExportedEntity(
        category="<entity-a>",
        composition_mode="combineComponents",
    )
]

u1 = ConversationExportedUtterance(
    text="<utterance-1>",
    intent="<intent-b>",
    language="<language-tag>",  # e.g., "en-us"
    dataset="Train",
    entities=[ExportedUtteranceEntityLabel(category="<entity-a>", offset=0, length=5)],
)

u2 = ConversationExportedUtterance(
    text="<utterance-2>",
    intent="<intent-b>",
    language="<language-tag>",
    dataset="Train",
    entities=[ExportedUtteranceEntityLabel(category="<entity-a>", offset=0, length=5)],
)

u3 = ConversationExportedUtterance(
    text="<utterance-3>",
    intent="<intent-b>",
    language="<language-tag>",
    dataset="Train",
    entities=[ExportedUtteranceEntityLabel(category="<entity-a>", offset=0, length=4)],
)

assets = ConversationExportedProjectAsset(
    intents=intents,
    entities=entities,
    utterances=[u1, u2, u3],
)

metadata = CreateProjectOptions(
    project_kind=ProjectKind.CONVERSATION,
    project_name=project_name,  # required
    language="<language-tag>",  # required (e.g., "en-us")
    settings=ProjectSettings(confidence_threshold=0.0),
    multilingual=False,
    description="",
)

exported_project = ExportedProject(
    project_file_version="<project-file-version>",  # e.g., "2025-05-15-preview"
    string_index_type="Utf16CodeUnit",
    metadata=metadata,
    assets=assets,
)

# begin import (long-running operation)
poller = project_client.project.begin_import(
    body=exported_project,
    exported_project_format=ExportedProjectFormat.CONVERSATION,
)

try:
    poller.result()
    print("Import completed.")
    print(f"done: {poller.done()}")
    print(f"status: {poller.status()}")
except HttpResponseError as e:
    msg = getattr(getattr(e, "error", None), "message", str(e))
    print(f"Operation failed: {msg}")
```

### Train a Model

```python
import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations.authoring import ConversationAuthoringClient
from azure.ai.language.conversations.authoring.models import (
    TrainingJobDetails, TrainingMode, EvaluationDetails, EvaluationKind
)

endpoint = os.environ["AZURE_CONVERSATIONS_AUTHORING_ENDPOINT"]
key = os.environ["AZURE_CONVERSATIONS_AUTHORING_KEY"]
project_name = os.environ.get("PROJECT_NAME", "<project-name>")

client = ConversationAuthoringClient(endpoint, AzureKeyCredential(key))
project_client = client.get_project_client(project_name)

# build training request
training_job_details = TrainingJobDetails(
    model_label="<model-label>",
    training_mode=TrainingMode.STANDARD,
    training_config_version="<config-version>",
    evaluation_options=EvaluationDetails(
        kind=EvaluationKind.PERCENTAGE,
        testing_split_percentage=20,
        training_split_percentage=80,
    ),
)

# start training job (long-running operation)
poller = project_client.project.begin_train(body=training_job_details)

# wait for job completion and get the result (no explicit type variables)
result = poller.result()

# print result details
print("=== Training Result ===")
print(f"Model Label: {result.model_label}")
print(f"Training Config Version: {result.training_config_version}")
print(f"Training Mode: {result.training_mode}")
print(f"Training Status: {result.training_status}")
print(f"Data Generation Status: {result.data_generation_status}")
print(f"Evaluation Status: {result.evaluation_status}")
print(f"Estimated End: {result.estimated_end_on}")
```

## Optional Configuration

Optional keyword arguments can be passed in at the client and per-operation level. The azure-core [reference documentation][azure_core_ref_docs] describes available configurations for retries, logging, transport protocols, and more.

## Troubleshooting

### General

The Conversation Authoring client will raise exceptions defined in [Azure Core][azure_core_exceptions].  
These exceptions provide consistent error handling across Azure SDK libraries.

### Logging

This library uses Python’s built-in [logging][python_logging] module for diagnostic logging.  

- Basic information about HTTP requests (URLs, headers) is logged at **INFO** level.  
- Detailed request/response information (including bodies and unredacted headers) is logged at **DEBUG** level.  

You can enable logging when constructing the client by passing `logging_enable=True`.

```python
import sys
import logging
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations.authoring import ConversationAuthoringClient

# Configure logger
logger = logging.getLogger("azure")
logger.setLevel(logging.DEBUG)
handler = logging.StreamHandler(stream=sys.stdout)
logger.addHandler(handler)

endpoint = "https://<endpoint>.cognitiveservices.azure.com/"
credential = AzureKeyCredential("<api-key>")

# This client will log detailed HTTP information
client = ConversationAuthoringClient(endpoint, credential, logging_enable=True)
```

Similarly, `logging_enable` can enable detailed logging for a single operation, even when it isn't enabled for the client:

```python
result = client.create_project(
    project_name="<project-name>",
    body={...},
    logging_enable=True,
)
```

## Next steps

### More sample code

See the [Sample README][conversation_authoring_samples] for additional examples that demonstrate common Conversation Authoring workflows such as:

- Creating and managing projects  
- Importing and exporting project assets  
- Training models and retrieving evaluation results  
- Deploying and swapping models  
- Assigning or unassigning resources  
- Loading snapshots and managing trained models  

---

## Contributing

See the [CONTRIBUTING.md][contributing] guide for details on building, testing, and contributing to this library.

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA), declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit [cla.microsoft.com][cla].

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repositories using our CLA.

This project has adopted the [Microsoft Open Source Code of Conduct][code_of_conduct].  
For more information, see the [Code of Conduct FAQ][coc_faq] or contact [opencode@microsoft.com][coc_contact] with any additional questions.

---

<!-- LINKS -->
[azure_cli]: https://learn.microsoft.com/cli/azure/
[azure_portal]: https://portal.azure.com/
[azure_subscription]: https://azure.microsoft.com/free/
[language_resource]: https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
[cla]: https://cla.microsoft.com
[coc_contact]: mailto:opencode@microsoft.com
[coc_faq]: https://opensource.microsoft.com/codeofconduct/faq/
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[cognitive_auth]: https://learn.microsoft.com/azure/cognitive-services/authentication/
[contributing]: https://github.com/Azure/azure-sdk-for-python/blob/main/CONTRIBUTING.md
[python_logging]: https://docs.python.org/3/library/logging.html
[sdk_logging_docs]: https://learn.microsoft.com/azure/developer/python/azure-sdk-logging
[azure_core_ref_docs]: https://azuresdkdocs.z19.web.core.windows.net/python/azure-core/latest/azure.core.html
[azure_core_exceptions]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md
[pip_link]: https://pypi.org/project/pip/
[conversation_authoring_client_src]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/cognitivelanguage/azure-ai-language-conversations-authoring
[conversation_authoring_pypi_package]: https://pypi.org/project/azure-ai-language-conversations-authoring/
[conversation_authoring_samples]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/cognitivelanguage/azure-ai-language-conversations-authoring/samples/README.md
[conversation_authoring_docs]: https://learn.microsoft.com/azure/ai-services/language-service/conversational-language-understanding/overview
[api_reference_authoring]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/cognitivelanguage/azure-ai-language-conversations-authoring
<!-- TODO: change api_reference_documentation to azuresdkdocs link after first publish -->
[conversation_authoring_restdocs]: https://learn.microsoft.com/rest/api/language/conversation-authoring-project?view=rest-language-2023-04-01
[azure_language_portal]: https://language.cognitive.azure.com/home
[cognitive_authentication_aad]: https://learn.microsoft.com/azure/cognitive-services/authentication#authenticate-with-azure-active-directory
[azure_identity_credentials]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity#credentials
[custom_subdomain]: https://learn.microsoft.com/azure/cognitive-services/authentication#create-a-resource-with-a-custom-subdomain
[install_azure_identity]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity#install-the-package
[register_aad_app]: https://learn.microsoft.com/azure/cognitive-services/authentication#assign-a-role-to-a-service-principal
[grant_role_access]: https://learn.microsoft.com/azure/cognitive-services/authentication#assign-a-role-to-a-service-principal
[default_azure_credential]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity#defaultazurecredential