File: sample_delete_trained_model_async.py

package info (click to toggle)
python-azure 20251014%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 766,472 kB
  • sloc: python: 6,314,744; ansic: 804; javascript: 287; makefile: 198; sh: 198; xml: 109
file content (71 lines) | stat: -rw-r--r-- 2,301 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_delete_trained_model_async.py
DESCRIPTION:
    This sample demonstrates how to delete a trained model from a Conversation Authoring project (async).
USAGE:
    python sample_delete_trained_model_async.py

REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
    AZURE_CONVERSATIONS_AUTHORING_ENDPOINT
    AZURE_CLIENT_ID
    AZURE_TENANT_ID
    AZURE_CLIENT_SECRET

NOTE:
    If you want to use AzureKeyCredential instead, set:
      - AZURE_CONVERSATIONS_AUTHORING_ENDPOINT
      - AZURE_CONVERSATIONS_AUTHORING_KEY

OPTIONAL ENV VARS:
    PROJECT_NAME       # defaults to "<project-name>"
    TRAINED_MODEL      # defaults to "<trained-model-label>"
"""

# [START conversation_authoring_delete_trained_model_async]
import os
import asyncio
from azure.identity import DefaultAzureCredential
from azure.ai.language.conversations.authoring.aio import ConversationAuthoringClient


async def sample_delete_trained_model_async():
    # settings
    endpoint = os.environ["AZURE_CONVERSATIONS_AUTHORING_ENDPOINT"]
    project_name = os.environ.get("PROJECT_NAME", "<project-name>")
    trained_model_label = os.environ.get("TRAINED_MODEL", "<trained-model-label>")

    credential = DefaultAzureCredential()
    async with ConversationAuthoringClient(endpoint, credential=credential) as client:
        project_client = client.get_project_client(project_name)

        captured = {}

        def capture_response(pipeline_response):
            # capture the raw HTTP response status code
            captured["status_code"] = pipeline_response.http_response.status_code

        # delete trained model
        await project_client.trained_model.delete_trained_model(
            trained_model_label,
            raw_response_hook=capture_response,
        )

        # print response
        status = captured.get("status_code")
        print(f"Delete Trained Model Response Status: {status}")

# [END conversation_authoring_delete_trained_model_async]

async def main():
    await sample_delete_trained_model_async()


if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())