File: sample_cancel_training_job.py

package info (click to toggle)
python-azure 20251014%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 766,472 kB
  • sloc: python: 6,314,744; ansic: 804; javascript: 287; makefile: 198; sh: 198; xml: 109
file content (74 lines) | stat: -rw-r--r-- 2,546 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_cancel_training_job.py
DESCRIPTION:
    This sample demonstrates how to cancel a training job in a Conversation Authoring project.
USAGE:
    python sample_cancel_training_job.py

REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
    AZURE_CONVERSATIONS_AUTHORING_ENDPOINT
    AZURE_CLIENT_ID
    AZURE_TENANT_ID
    AZURE_CLIENT_SECRET

NOTE:
    If you want to use AzureKeyCredential instead, set:
      - AZURE_CONVERSATIONS_AUTHORING_ENDPOINT
      - AZURE_CONVERSATIONS_AUTHORING_KEY

OPTIONAL ENV VARS:
    PROJECT_NAME   # defaults to "<project-name>"
    JOB_ID         # defaults to "<job-id>"
"""

# [START conversation_authoring_cancel_training_job]
import os
from azure.identity import DefaultAzureCredential
from azure.ai.language.conversations.authoring import ConversationAuthoringClient


def sample_cancel_training_job():
    # settings
    endpoint = os.environ["AZURE_CONVERSATIONS_AUTHORING_ENDPOINT"]
    project_name = os.environ.get("PROJECT_NAME", "<project-name>")
    job_id = os.environ.get("JOB_ID", "<job-id>")

    # create a client with AAD
    credential = DefaultAzureCredential()
    client = ConversationAuthoringClient(endpoint, credential=credential)
    project_client = client.get_project_client(project_name)

    poller = project_client.project.begin_cancel_training_job(
            job_id=job_id,
        )

    result = poller.result()  # TrainingJobResult
    print(f"Model Label: {result.model_label}")
    print(f"Training Config Version: {result.training_config_version}")
    print(f"Training Mode: {result.training_mode}")
    if result.data_generation_status is not None:
        print(f"Data Generation Status: {result.data_generation_status.status}")
        print(f"Data Generation %: {result.data_generation_status.percent_complete}")
    if result.training_status is not None:
        print(f"Training Status: {result.training_status.status}")
        print(f"Training %: {result.training_status.percent_complete}")
    if result.evaluation_status is not None:
        print(f"Evaluation Status: {result.evaluation_status.status}")
        print(f"Evaluation %: {result.evaluation_status.percent_complete}")
    print(f"Estimated End: {result.estimated_end_on}")

# [END conversation_authoring_cancel_training_job]


def main():
    sample_cancel_training_job()


if __name__ == "__main__":
    main()