File: sample_deploy_project.py

package info (click to toggle)
python-azure 20251014%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 766,472 kB
  • sloc: python: 6,314,744; ansic: 804; javascript: 287; makefile: 198; sh: 198; xml: 109
file content (77 lines) | stat: -rw-r--r-- 2,441 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_deploy_project.py
DESCRIPTION:
    This sample demonstrates how to deploy a trained model to a deployment slot
    in a Conversation Authoring project.
USAGE:
    python sample_deploy_project.py

REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
    AZURE_CONVERSATIONS_AUTHORING_ENDPOINT
    AZURE_CLIENT_ID
    AZURE_TENANT_ID
    AZURE_CLIENT_SECRET

NOTE:
    If you want to use AzureKeyCredential instead, set:
      - AZURE_CONVERSATIONS_AUTHORING_ENDPOINT
      - AZURE_CONVERSATIONS_AUTHORING_KEY

OPTIONAL ENV VARS:
    PROJECT_NAME       # defaults to "<project-name>"
    DEPLOYMENT_NAME    # defaults to "<deployment-name>"
    TRAINED_MODEL      # defaults to "<trained-model-label>"
"""

# [START conversation_authoring_deploy_project]
import os
from azure.identity import DefaultAzureCredential
from azure.core.exceptions import HttpResponseError
from azure.ai.language.conversations.authoring import ConversationAuthoringClient
from azure.ai.language.conversations.authoring.models import CreateDeploymentDetails


def sample_deploy_project():
    # settings
    endpoint = os.environ["AZURE_CONVERSATIONS_AUTHORING_ENDPOINT"]
    project_name = os.environ.get("PROJECT_NAME", "<project-name>")
    deployment_name = os.environ.get("DEPLOYMENT_NAME", "<deployment-name>")
    trained_model_label = os.environ.get("TRAINED_MODEL", "<trained-model-label>")

    # create a client with AAD
    credential = DefaultAzureCredential()
    client = ConversationAuthoringClient(endpoint, credential=credential)
    project_client = client.get_project_client(project_name)

    # build deployment request
    details = CreateDeploymentDetails(trained_model_label=trained_model_label)

    # start deploy (long-running operation)
    poller = project_client.deployment.begin_deploy_project(
        deployment_name=deployment_name,
        body=details,
    )

    try:
        poller.result()
        print("Deploy completed.")
        print(f"done: {poller.done()}")
        print(f"status: {poller.status()}")
    except HttpResponseError as e:
        print(f"Operation failed: {e.message}")
        print(e.error)
# [END conversation_authoring_deploy_project]


def main():
    sample_deploy_project()


if __name__ == "__main__":
    main()