1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
|
# pylint: disable=line-too-long,useless-suppression
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""
FILE: sample_get_model_evaluation_summary.py
DESCRIPTION:
This sample demonstrates how to retrieve the evaluation summary for a trained model
in a Conversation Authoring project.
USAGE:
python sample_get_model_evaluation_summary.py
REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
AZURE_CONVERSATIONS_AUTHORING_ENDPOINT
AZURE_CLIENT_ID
AZURE_TENANT_ID
AZURE_CLIENT_SECRET
NOTE:
If you want to use AzureKeyCredential instead, set:
- AZURE_CONVERSATIONS_AUTHORING_ENDPOINT
- AZURE_CONVERSATIONS_AUTHORING_KEY
OPTIONAL ENV VARS:
PROJECT_NAME # defaults to "<project-name>"
TRAINED_MODEL # defaults to "<trained-model-label>"
"""
# [START conversation_authoring_get_model_evaluation_summary]
import os
from azure.identity import DefaultAzureCredential
from azure.ai.language.conversations.authoring import ConversationAuthoringClient
def sample_get_model_evaluation_summary():
# settings
endpoint = os.environ["AZURE_CONVERSATIONS_AUTHORING_ENDPOINT"]
project_name = os.environ.get("PROJECT_NAME", "<project-name>")
trained_model_label = os.environ.get("TRAINED_MODEL", "<trained-model-label>")
# create a client with AAD
credential = DefaultAzureCredential()
client = ConversationAuthoringClient(endpoint, credential=credential)
project_client = client.get_project_client(project_name)
# get evaluation summary for a trained model
eval_summary = project_client.trained_model.get_model_evaluation_summary(trained_model_label)
print("=== Model Evaluation Summary ===")
# ----- Entities evaluation (micro/macro) -----
entities_summary = eval_summary.entities_evaluation
if entities_summary is not None:
print(
f"Entities - Micro F1: {entities_summary.micro_f1}, "
f"Micro Precision: {entities_summary.micro_precision}, "
f"Micro Recall: {entities_summary.micro_recall}"
)
print(
f"Entities - Macro F1: {entities_summary.macro_f1}, "
f"Macro Precision: {entities_summary.macro_precision}, "
f"Macro Recall: {entities_summary.macro_recall}"
)
# Per-entity details
ent_map = entities_summary.entities or {}
for entity_name, entity_summary in ent_map.items():
print(f"Entity '{entity_name}': F1 = {entity_summary.f1}, Precision = {entity_summary.precision}, Recall = {entity_summary.recall}")
print(
f" True Positives: {entity_summary.true_positive_count}, "
f"True Negatives: {entity_summary.true_negative_count}"
)
print(
f" False Positives: {entity_summary.false_positive_count}, "
f"False Negatives: {entity_summary.false_negative_count}"
)
# ----- Intents evaluation (micro/macro) -----
intents_summary = eval_summary.intents_evaluation
if intents_summary is not None:
print(
f"Intents - Micro F1: {intents_summary.micro_f1}, "
f"Micro Precision: {intents_summary.micro_precision}, "
f"Micro Recall: {intents_summary.micro_recall}"
)
print(
f"Intents - Macro F1: {intents_summary.macro_f1}, "
f"Macro Precision: {intents_summary.macro_precision}, "
f"Macro Recall: {intents_summary.macro_recall}"
)
# Per-intent details
intent_map = intents_summary.intents or {}
for intent_name, intent_summary in intent_map.items():
print(f"Intent '{intent_name}': F1 = {intent_summary.f1}, Precision = {intent_summary.precision}, Recall = {intent_summary.recall}")
print(
f" True Positives: {intent_summary.true_positive_count}, "
f"True Negatives: {intent_summary.true_negative_count}"
)
print(
f" False Positives: {intent_summary.false_positive_count}, "
f"False Negatives: {intent_summary.false_negative_count}"
)
# [END conversation_authoring_get_model_evaluation_summary]
def main():
sample_get_model_evaluation_summary()
if __name__ == "__main__":
main()
|