File: sample_load_snapshot.py

package info (click to toggle)
python-azure 20251014%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 766,472 kB
  • sloc: python: 6,314,744; ansic: 804; javascript: 287; makefile: 198; sh: 198; xml: 109
file content (67 lines) | stat: -rw-r--r-- 2,006 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_load_snapshot.py
DESCRIPTION:
    This sample demonstrates how to load a **trained model snapshot** in a Text Authoring project.
USAGE:
    python sample_load_snapshot.py
REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
    AZURE_TEXT_ENDPOINT
    AZURE_CLIENT_ID
    AZURE_TENANT_ID
    AZURE_CLIENT_SECRET
NOTE:
    If you want to use AzureKeyCredential instead, set:
      - AZURE_TEXT_ENDPOINT
      - AZURE_TEXT_KEY
OPTIONAL ENV VARS:
    PROJECT_NAME         # defaults to "<project-name>"
    TRAINED_MODEL_LABEL  # defaults to "<trained-model-label>"
"""

# [START text_authoring_load_snapshot]
import os
from azure.identity import DefaultAzureCredential
from azure.core.exceptions import HttpResponseError
from azure.ai.textanalytics.authoring import TextAuthoringClient


def sample_load_snapshot():
    # settings
    endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
    project_name = os.environ.get("PROJECT_NAME", "<project-name>")
    trained_model_label = os.environ.get("TRAINED_MODEL_LABEL", "<trained-model-label>")

    # create a client with AAD
    credential = DefaultAzureCredential()
    client = TextAuthoringClient(endpoint, credential=credential)

    # project-scoped client
    project_client = client.get_project_client(project_name)

    # start load snapshot (LRO) and handle success/error
    poller = project_client.trained_model.begin_load_snapshot(trained_model_label)
    try:
        poller.result()  # completes with None; raises on failure
        print("Load snapshot completed.")
        print(f"done: {poller.done()}")
        print(f"status: {poller.status()}")
    except HttpResponseError as e:
        print(f"Operation failed: {e.message}")
        print(e.error)


# [END text_authoring_load_snapshot]


def main():
    sample_load_snapshot()


if __name__ == "__main__":
    main()