1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
|
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft.
# Licensed under the MIT License.
# ------------------------------------
"""
FILE: sample_train_project.py
DESCRIPTION:
This sample demonstrates how to train a **Text Authoring** project.
USAGE:
python sample_train_project.py
REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
AZURE_TEXT_ENDPOINT
AZURE_CLIENT_ID
AZURE_TENANT_ID
AZURE_CLIENT_SECRET
NOTE:
If you want to use AzureKeyCredential instead, set:
- AZURE_TEXT_ENDPOINT
- AZURE_TEXT_KEY
OPTIONAL ENV VARS:
PROJECT_NAME # defaults to "<project-name>"
MODEL_LABEL # defaults to "<model-label>"
TRAINING_CONFIG_VERSION # defaults to "<training-config-version>"
"""
# [START text_authoring_train_project]
import os
from azure.identity import DefaultAzureCredential
from azure.core.exceptions import HttpResponseError
from azure.ai.textanalytics.authoring import TextAuthoringClient
from azure.ai.textanalytics.authoring.models import (
TrainingJobDetails,
EvaluationDetails,
EvaluationKind,
)
def sample_train_project():
# settings
endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
project_name = os.environ.get("PROJECT_NAME", "<project-name>")
model_label = os.environ.get("MODEL_LABEL", "<model-label>")
training_config_version = os.environ.get("TRAINING_CONFIG_VERSION", "<training-config-version>")
# create a client with AAD
credential = DefaultAzureCredential()
client = TextAuthoringClient(endpoint, credential=credential)
# project-scoped client
project_client = client.get_project_client(project_name)
# build training job details (80/20 split by percentage)
training_job_details = TrainingJobDetails(
model_label=model_label,
training_config_version=training_config_version,
evaluation_options=EvaluationDetails(
kind=EvaluationKind.PERCENTAGE,
testing_split_percentage=20,
training_split_percentage=80,
),
)
# begin training (LRO) and handle success/error
poller = project_client.project.begin_train(body=training_job_details)
try:
poller.result() # completes with None; raises on failure
print("Train completed.")
print(f"done: {poller.done()}")
print(f"status: {poller.status()}")
except HttpResponseError as e:
print(f"Operation failed: {e.message}")
print(e.error)
# [END text_authoring_train_project]
def main():
sample_train_project()
if __name__ == "__main__":
main()
|