File: test_deploy_project_async.py

package info (click to toggle)
python-azure 20251014%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 766,472 kB
  • sloc: python: 6,314,744; ansic: 804; javascript: 287; makefile: 198; sh: 198; xml: 109
file content (53 lines) | stat: -rw-r--r-- 2,175 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# pylint: disable=line-too-long,useless-suppression
import functools
import pytest

from devtools_testutils import AzureRecordedTestCase, EnvironmentVariableLoader
from devtools_testutils.aio import recorded_by_proxy_async
from azure.core.credentials import AzureKeyCredential
from azure.core.exceptions import HttpResponseError
from azure.ai.textanalytics.authoring.aio import TextAuthoringClient
from azure.ai.textanalytics.authoring.models import CreateDeploymentDetails, DeploymentState

ConversationsPreparer = functools.partial(
    EnvironmentVariableLoader,
    "authoring",
    authoring_endpoint="https://Sanitized.cognitiveservices.azure.com/",
    authoring_key="fake_key",
)


class TestConversations(AzureRecordedTestCase):
    def create_client(self, endpoint, key):
        return TextAuthoringClient(endpoint, AzureKeyCredential(key))  # type: ignore[arg-type]


class TestConversationsDeployProjectAsync(TestConversations):
    @ConversationsPreparer()
    @recorded_by_proxy_async
    @pytest.mark.asyncio
    async def test_deploy_project_async(self, authoring_endpoint, authoring_key):
        async with TextAuthoringClient(authoring_endpoint, AzureKeyCredential(authoring_key)) as client:
            project_name = "single-class-project"
            deployment_name = "deployment0902"
            trained_model_label = "model5"

            project_client = client.get_project_client(project_name)

            # Build request body for deployment
            details = CreateDeploymentDetails(trained_model_label=trained_model_label)

            # Act: begin deploy and wait for completion
            poller = await project_client.deployment.begin_deploy_project(
                deployment_name=deployment_name,
                body=details,
            )
            try:
                await poller.result()
            except HttpResponseError as e:
                msg = getattr(getattr(e, "error", None), "message", str(e))
                print(f"Operation failed: {msg}")
                raise

            # If we get here, the deploy succeeded
            print(f"Deploy project completed. done={poller.done()} status={poller.status()}")