1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
|
# Azure Text Analytics client library for Python
The Azure Cognitive Service for Language is a cloud-based service that provides Natural Language Processing (NLP) features for understanding and analyzing text, and includes the following main features:
- Sentiment Analysis
- Named Entity Recognition
- Language Detection
- Key Phrase Extraction
- Entity Linking
- Multiple Analysis
- Personally Identifiable Information (PII) Detection
- Text Analytics for Health
- Custom Named Entity Recognition
- Custom Text Classification
- Extractive Text Summarization
- Abstractive Text Summarization
[Source code][source_code]
| [Package (PyPI)][ta_pypi]
| [Package (Conda)](https://anaconda.org/microsoft/azure-ai-textanalytics/)
| [API reference documentation][ta_ref_docs]
| [Product documentation][language_product_documentation]
| [Samples][ta_samples]
## Getting started
### Prerequisites
- Python 3.7 later is required to use this package.
- You must have an [Azure subscription][azure_subscription] and a
[Cognitive Services or Language service resource][ta_or_cs_resource] to use this package.
#### Create a Cognitive Services or Language service resource
The Language service supports both [multi-service and single-service access][multi_and_single_service].
Create a Cognitive Services resource if you plan to access multiple cognitive services under a single endpoint/key. For Language service access only, create a Language service resource.
You can create the resource using the [Azure Portal][azure_portal_create_ta_resource] or [Azure CLI][azure_cli] following the steps in [this document][azure_cli_create_ta_resource].
Interaction with the service using the client library begins with a [client](#textanalyticsclient "TextAnalyticsClient").
To create a client object, you will need the Cognitive Services or Language service `endpoint` to
your resource and a `credential` that allows you access:
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalyticsClient
credential = AzureKeyCredential("<api_key>")
text_analytics_client = TextAnalyticsClient(endpoint="https://<resource-name>.cognitiveservices.azure.com/", credential=credential)
```
Note that for some Cognitive Services resources the endpoint might look different from the above code snippet.
For example, `https://<region>.api.cognitive.microsoft.com/`.
### Install the package
Install the Azure Text Analytics client library for Python with [pip][pip]:
```bash
pip install azure-ai-textanalytics
```
<!-- SNIPPET:sample_authentication.create_ta_client_with_key -->
```python
import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalysisClient
endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
key = os.environ["AZURE_TEXT_KEY"]
text_client = TextAnalysisClient(endpoint, AzureKeyCredential(key))
```
<!-- END SNIPPET -->
> Note that `5.2.X` and newer targets the Azure Cognitive Service for Language APIs. These APIs include the text analysis and natural language processing features found in the previous versions of the Text Analytics client library.
In addition, the service API has changed from semantic to date-based versioning. This version of the client library defaults to the latest supported API version, which currently is `2023-04-01`.
This table shows the relationship between SDK versions and supported API versions of the service
| SDK version | Supported API version of service |
| ------------ | --------------------------------- |
| 6.0.0b1 - Latest preview release | 3.0, 3.1, 2022-05-01, 2023-04-01, 2024-11-01, 2024-11-15-preview, 2025-05-15-preview (default) |
| 5.3.X - Latest stable release | 3.0, 3.1, 2022-05-01, 2023-04-01 (default) |
| 5.2.X | 3.0, 3.1, 2022-05-01 (default) |
| 5.1.0 | 3.0, 3.1 (default) |
| 5.0.0 | 3.0 |
API version can be selected by passing the [api_version][text_analytics_client] keyword argument into the client.
For the latest Language service features, consider selecting the most recent beta API version. For production scenarios, the latest stable version is recommended. Setting to an older version may result in reduced feature compatibility.
### Authenticate the client
#### Get the endpoint
You can find the endpoint for your Language service resource using the
[Azure Portal][azure_portal_get_endpoint]
or [Azure CLI][azure_cli_endpoint_lookup]:
```bash
# Get the endpoint for the Language service resource
az cognitiveservices account show --name "resource-name" --resource-group "resource-group-name" --query "properties.endpoint"
```
#### Get the API Key
You can get the [API key][cognitive_authentication_api_key] from the Cognitive Services or Language service resource in the [Azure Portal][azure_portal_get_endpoint].
Alternatively, you can use [Azure CLI][azure_cli_endpoint_lookup] snippet below to get the API key of your resource.
`az cognitiveservices account keys list --name "resource-name" --resource-group "resource-group-name"`
#### Create a TextAnalyticsClient with an API Key Credential
Once you have the value for the API key, you can pass it as a string into an instance of [AzureKeyCredential][azure-key-credential]. Use the key as the credential parameter
to authenticate the client:
<!-- SNIPPET:sample_authentication.create_ta_client_with_key -->
```python
import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalysisClient
endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
key = os.environ["AZURE_TEXT_KEY"]
text_client = TextAnalysisClient(endpoint, AzureKeyCredential(key))
```
<!-- END SNIPPET -->
#### Create a TextAnalyticsClient with an Azure Active Directory Credential
To use an [Azure Active Directory (AAD) token credential][cognitive_authentication_aad],
provide an instance of the desired credential type obtained from the
[azure-identity][azure_identity_credentials] library.
Note that regional endpoints do not support AAD authentication. Create a [custom subdomain][custom_subdomain]
name for your resource in order to use this type of authentication.
Authentication with AAD requires some initial setup:
- [Install azure-identity][install_azure_identity]
- [Register a new AAD application][register_aad_app]
- [Grant access][grant_role_access] to the Language service by assigning the `"Cognitive Services Language Reader"` role to your service principal.
After setup, you can choose which type of [credential][azure_identity_credentials] from azure.identity to use.
As an example, [DefaultAzureCredential][default_azure_credential]
can be used to authenticate the client:
Set the values of the client ID, tenant ID, and client secret of the AAD application as environment variables:
AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET
Use the returned token credential to authenticate the client:
<!-- SNIPPET:sample_authentication.create_ta_client_with_aad -->
```python
import os
from azure.ai.textanalytics import TextAnalysisClient
from azure.identity import DefaultAzureCredential
endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
credential = DefaultAzureCredential()
text_client = TextAnalysisClient(endpoint, credential=credential)
```
<!-- END SNIPPET -->
## Key concepts
### TextAnalyticsClient
The Text Analytics client library provides a [TextAnalyticsClient][text_analytics_client] to do analysis on [batches of documents](#examples "Examples").
It provides both synchronous and asynchronous operations to access a specific use of text analysis, such as language detection or key phrase extraction.
### Input
A **document** is a single unit to be analyzed by the predictive models in the Language service.
The input for each operation is passed as a **list** of documents.
Each document can be passed as a string in the list, e.g.
```python
documents = ["I hated the movie. It was so slow!", "The movie made it into my top ten favorites. What a great movie!"]
```
or, if you wish to pass in a per-item document `id` or `language`/`country_hint`, they can be passed as a list of
[DetectLanguageInput][detect_language_input] or
[TextDocumentInput][text_document_input]
or a dict-like representation of the object:
```python
documents = [
{"id": "1", "language": "en", "text": "I hated the movie. It was so slow!"},
{"id": "2", "language": "en", "text": "The movie made it into my top ten favorites. What a great movie!"},
]
```
See [service limitations][service_limits] for the input, including document length limits, maximum batch size, and supported text encoding.
### Return Value
The return value for a single document can be a result or error object.
A heterogeneous list containing a collection of result and error objects is returned from each operation.
These results/errors are index-matched with the order of the provided documents.
A **result**, such as [AnalyzeSentimentResult][analyze_sentiment_result],
is the result of a text analysis operation and contains a prediction or predictions about a document input.
The **error** object, [DocumentError][document_error], indicates that the service had trouble processing the document and contains
the reason it was unsuccessful.
### Document Error Handling
You can filter for a result or error object in the list by using the `is_error` attribute. For a result object this is always `False` and for a
[DocumentError][document_error] this is `True`.
For example, to filter out all DocumentErrors you might use list comprehension:
```python
response = text_analytics_client.analyze_sentiment(documents)
successful_responses = [doc for doc in response if not doc.is_error]
```
You can also use the `kind` attribute to filter between result types:
```python
poller = text_analytics_client.begin_analyze_actions(documents, actions)
response = poller.result()
for result in response:
if result.kind == "SentimentAnalysis":
print(f"Sentiment is {result.sentiment}")
elif result.kind == "KeyPhraseExtraction":
print(f"Key phrases: {result.key_phrases}")
elif result.is_error is True:
print(f"Document error: {result.code}, {result.message}")
```
### Long-Running Operations
Long-running operations are operations which consist of an initial request sent to the service to start an operation,
followed by polling the service at intervals to determine whether the operation has completed or failed, and if it has
succeeded, to get the result.
Methods that support healthcare analysis, custom text analysis, or multiple analyses are modeled as long-running operations.
The client exposes a `begin_<method-name>` method that returns a poller object. Callers should wait
for the operation to complete by calling `result()` on the poller object returned from the `begin_<method-name>` method.
Sample code snippets are provided to illustrate using long-running operations [below](#examples "Examples").
## Examples
The following section provides several code snippets covering some of the most common Language service tasks, including:
- [Analyze Sentiment](#analyze-sentiment "Analyze sentiment")
- [Recognize Entities](#recognize-entities "Recognize entities")
- [Recognize Linked Entities](#recognize-linked-entities "Recognize linked entities")
- [Recognize PII Entities](#recognize-pii-entities "Recognize pii entities")
- [Extract Key Phrases](#extract-key-phrases "Extract key phrases")
- [Detect Language](#detect-language "Detect language")
- [Healthcare Entities Analysis](#healthcare-entities-analysis "Healthcare Entities Analysis")
- [Multiple Analysis](#multiple-analysis "Multiple analysis")
- [Custom Entity Recognition][recognize_custom_entities_sample]
- [Custom Single Label Classification][single_label_classify_sample]
- [Custom Multi Label Classification][multi_label_classify_sample]
- [Extractive Summarization][extract_summary_sample]
- [Abstractive Summarization][abstract_summary_sample]
### Analyze Sentiment
[analyze_sentiment][analyze_sentiment] looks at its input text and determines whether its sentiment is positive, negative, neutral or mixed. It's response includes per-sentence sentiment analysis and confidence scores.
<!-- SNIPPET:sample_analyze_sentiment.analyze_sentiment -->
```python
import os
from azure.identity import DefaultAzureCredential
from azure.ai.textanalytics import TextAnalysisClient
from azure.ai.textanalytics.models import (
MultiLanguageTextInput,
MultiLanguageInput,
TextSentimentAnalysisInput,
AnalyzeTextSentimentResult,
)
def sample_analyze_sentiment():
# settings
endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
credential = DefaultAzureCredential()
client = TextAnalysisClient(endpoint, credential=credential)
# input
text_a = (
"The food and service were unacceptable, but the concierge were nice. "
"After talking to them about the quality of the food and the process to get room service "
"they refunded the money we spent at the restaurant and gave us a voucher for nearby restaurants."
)
body = TextSentimentAnalysisInput(
text_input=MultiLanguageTextInput(
multi_language_inputs=[MultiLanguageInput(id="A", text=text_a, language="en")]
)
)
# Sync (non-LRO) call
result = client.analyze_text(body=body)
# Print results
if isinstance(result, AnalyzeTextSentimentResult) and result.results and result.results.documents:
for doc in result.results.documents:
print(f"\nDocument ID: {doc.id}")
print(f"Overall sentiment: {doc.sentiment}")
if doc.confidence_scores:
print("Confidence scores:")
print(f" positive={doc.confidence_scores.positive}")
print(f" neutral={doc.confidence_scores.neutral}")
print(f" negative={doc.confidence_scores.negative}")
if doc.sentences:
print("\nSentence sentiments:")
for s in doc.sentences:
print(f" Text: {s.text}")
print(f" Sentiment: {s.sentiment}")
if s.confidence_scores:
print(
" Scores: "
f"pos={s.confidence_scores.positive}, "
f"neu={s.confidence_scores.neutral}, "
f"neg={s.confidence_scores.negative}"
)
print(f" Offset: {s.offset}, Length: {s.length}\n")
else:
print("No sentence-level results returned.")
else:
print("No documents in the response or unexpected result type.")
```
<!-- END SNIPPET -->
The returned response is a heterogeneous list of result and error objects: list[[AnalyzeSentimentResult][analyze_sentiment_result], [DocumentError][document_error]]
Please refer to the service documentation for a conceptual discussion of [sentiment analysis][sentiment_analysis]. To see how to conduct more granular analysis into the opinions related to individual aspects (such as attributes of a product or service) in a text, see [here][opinion_mining_sample].
### Recognize Entities
[recognize_entities][recognize_entities] recognizes and categories entities in its input text as people, places, organizations, date/time, quantities, percentages, currencies, and more.
<!-- SNIPPET:sample_recognize_entities.recognize_entities -->
```python
import os
from azure.identity import DefaultAzureCredential
from azure.ai.textanalytics import TextAnalysisClient
from azure.ai.textanalytics.models import (
MultiLanguageTextInput,
MultiLanguageInput,
TextEntityRecognitionInput,
EntitiesActionContent,
AnalyzeTextEntitiesResult,
)
def sample_recognize_entities():
# settings
endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
credential = DefaultAzureCredential()
client = TextAnalysisClient(endpoint, credential=credential)
# input
text_a = (
"We love this trail and make the trip every year. The views are breathtaking and well worth the hike! "
"Yesterday was foggy though, so we missed the spectacular views. We tried again today and it was "
"amazing. Everyone in my family liked the trail although it was too challenging for the less "
"athletic among us. Not necessarily recommended for small children. A hotel close to the trail "
"offers services for childcare in case you want that."
)
body = TextEntityRecognitionInput(
text_input=MultiLanguageTextInput(
multi_language_inputs=[MultiLanguageInput(id="A", text=text_a, language="en")]
),
action_content=EntitiesActionContent(model_version="latest"),
)
result = client.analyze_text(body=body)
# Print results
if isinstance(result, AnalyzeTextEntitiesResult) and result.results and result.results.documents:
for doc in result.results.documents:
print(f"\nDocument ID: {doc.id}")
if doc.entities:
print("Entities:")
for entity in doc.entities:
print(f" Text: {entity.text}")
print(f" Category: {entity.category}")
if entity.subcategory:
print(f" Subcategory: {entity.subcategory}")
print(f" Offset: {entity.offset}")
print(f" Length: {entity.length}")
print(f" Confidence score: {entity.confidence_score}\n")
else:
print("No entities found for this document.")
else:
print("No documents in the response or unexpected result type.")
```
<!-- END SNIPPET -->
The returned response is a heterogeneous list of result and error objects: list[[RecognizeEntitiesResult][recognize_entities_result], [DocumentError][document_error]]
Please refer to the service documentation for a conceptual discussion of [named entity recognition][named_entity_recognition]
and [supported types][named_entity_categories].
### Recognize Linked Entities
[recognize_linked_entities][recognize_linked_entities] recognizes and disambiguates the identity of each entity found in its input text (for example,
determining whether an occurrence of the word Mars refers to the planet, or to the
Roman god of war). Recognized entities are associated with URLs to a well-known knowledge base, like Wikipedia.
<!-- SNIPPET:sample_recognize_linked_entities.recognize_linked_entities -->
```python
import os
from azure.identity import DefaultAzureCredential
from azure.ai.textanalytics import TextAnalysisClient
from azure.ai.textanalytics.models import (
MultiLanguageTextInput,
MultiLanguageInput,
TextEntityLinkingInput,
EntityLinkingActionContent,
AnalyzeTextEntityLinkingResult,
)
def sample_recognize_linked_entities():
# settings
endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
credential = DefaultAzureCredential()
client = TextAnalysisClient(endpoint, credential=credential)
# input
text_a = (
"Microsoft was founded by Bill Gates with some friends he met at Harvard. One of his friends, Steve "
"Ballmer, eventually became CEO after Bill Gates as well. Steve Ballmer eventually stepped down as "
"CEO of Microsoft, and was succeeded by Satya Nadella. Microsoft originally moved its headquarters "
"to Bellevue, Washington in January 1979, but is now headquartered in Redmond"
)
body = TextEntityLinkingInput(
text_input=MultiLanguageTextInput(
multi_language_inputs=[MultiLanguageInput(id="A", text=text_a, language="en")]
),
action_content=EntityLinkingActionContent(model_version="latest"),
)
# Sync (non-LRO) call
result = client.analyze_text(body=body)
# Print results
if isinstance(result, AnalyzeTextEntityLinkingResult) and result.results and result.results.documents:
for doc in result.results.documents:
print(f"\nDocument ID: {doc.id}")
if not doc.entities:
print("No linked entities found for this document.")
continue
print("Linked Entities:")
for linked in doc.entities:
print(f" Name: {linked.name}")
print(f" Language: {linked.language}")
print(f" Data source: {linked.data_source}")
print(f" URL: {linked.url}")
print(f" ID: {linked.id}")
if linked.matches:
print(" Matches:")
for match in linked.matches:
print(f" Text: {match.text}")
print(f" Confidence score: {match.confidence_score}")
print(f" Offset: {match.offset}")
print(f" Length: {match.length}")
print()
else:
print("No documents in the response or unexpected result type.")
```
<!-- END SNIPPET -->
The returned response is a heterogeneous list of result and error objects: list[[RecognizeLinkedEntitiesResult][recognize_linked_entities_result], [DocumentError][document_error]]
Please refer to the service documentation for a conceptual discussion of [entity linking][linked_entity_recognition]
and [supported types][linked_entities_categories].
### Recognize PII Entities
[recognize_pii_entities][recognize_pii_entities] recognizes and categorizes Personally Identifiable Information (PII) entities in its input text, such as
Social Security Numbers, bank account information, credit card numbers, and more.
<!-- SNIPPET:sample_recognize_pii_entities.recognize_pii_entities -->
```python
import os
from azure.identity import DefaultAzureCredential
from azure.ai.textanalytics import TextAnalysisClient
from azure.ai.textanalytics.models import (
MultiLanguageTextInput,
MultiLanguageInput,
TextPiiEntitiesRecognitionInput,
AnalyzeTextPiiResult,
)
def sample_recognize_pii_entities():
# settings
endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
credential = DefaultAzureCredential()
client = TextAnalysisClient(endpoint, credential=credential)
# input
text_a = (
"Parker Doe has repaid all of their loans as of 2020-04-25. Their SSN is 859-98-0987. "
"To contact them, use their phone number 800-102-1100. They are originally from Brazil and "
"have document ID number 998.214.865-68."
)
body = TextPiiEntitiesRecognitionInput(
text_input=MultiLanguageTextInput(
multi_language_inputs=[MultiLanguageInput(id="A", text=text_a, language="en")]
)
)
# Sync (non-LRO) call
result = client.analyze_text(body=body)
# Print results
if isinstance(result, AnalyzeTextPiiResult) and result.results and result.results.documents:
for doc in result.results.documents:
print(f"\nDocument ID: {doc.id}")
if doc.entities:
print("PII Entities:")
for entity in doc.entities:
print(f" Text: {entity.text}")
print(f" Category: {entity.category}")
# subcategory may be optional
if entity.subcategory:
print(f" Subcategory: {entity.subcategory}")
print(f" Offset: {entity.offset}")
print(f" Length: {entity.length}")
print(f" Confidence score: {entity.confidence_score}\n")
else:
print("No PII entities found for this document.")
else:
print("No documents in the response or unexpected result type.")
```
<!-- END SNIPPET -->
The returned response is a heterogeneous list of result and error objects: list[[RecognizePiiEntitiesResult][recognize_pii_entities_result], [DocumentError][document_error]]
Please refer to the service documentation for [supported PII entity types][pii_entity_categories].
Note: The Recognize PII Entities service is available in API version v3.1 and newer.
### Extract Key Phrases
[extract_key_phrases][extract_key_phrases] determines the main talking points in its input text. For example, for the input text "The food was delicious and there were wonderful staff", the API returns: "food" and "wonderful staff".
<!-- SNIPPET:sample_extract_key_phrases.extract_key_phrases -->
```python
import os
from azure.identity import DefaultAzureCredential
from azure.ai.textanalytics import TextAnalysisClient
from azure.ai.textanalytics.models import (
MultiLanguageTextInput,
MultiLanguageInput,
TextKeyPhraseExtractionInput,
KeyPhraseActionContent,
AnalyzeTextKeyPhraseResult,
)
def sample_extract_key_phrases():
# get settings
endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
credential = DefaultAzureCredential()
client = TextAnalysisClient(endpoint, credential=credential)
# Build input
text_a = (
"We love this trail and make the trip every year. The views are breathtaking and well worth the hike! "
"Yesterday was foggy though, so we missed the spectacular views. We tried again today and it was "
"amazing. Everyone in my family liked the trail although it was too challenging for the less "
"athletic among us. Not necessarily recommended for small children. A hotel close to the trail "
"offers services for childcare in case you want that."
)
body = TextKeyPhraseExtractionInput(
text_input=MultiLanguageTextInput(
multi_language_inputs=[MultiLanguageInput(id="A", text=text_a, language="en")]
),
action_content=KeyPhraseActionContent(model_version="latest"),
)
result = client.analyze_text(body=body)
# Validate and print results
if not isinstance(result, AnalyzeTextKeyPhraseResult):
print("Unexpected result type.")
return
if result.results is None:
print("No results returned.")
return
if result.results.documents is None or len(result.results.documents) == 0:
print("No documents in the response.")
return
for doc in result.results.documents:
print(f"\nDocument ID: {doc.id}")
if doc.key_phrases:
print("Key Phrases:")
for phrase in doc.key_phrases:
print(f" - {phrase}")
else:
print("No key phrases found for this document.")
```
<!-- END SNIPPET -->
The returned response is a heterogeneous list of result and error objects: list[[ExtractKeyPhrasesResult][extract_key_phrases_result], [DocumentError][document_error]]
Please refer to the service documentation for a conceptual discussion of [key phrase extraction][key_phrase_extraction].
### Detect Language
[detect_language][detect_language] determines the language of its input text, including the confidence score of the predicted language.
<!-- SNIPPET:sample_detect_language.detect_language -->
```python
import os
from azure.identity import DefaultAzureCredential
from azure.ai.textanalytics import TextAnalysisClient
from azure.ai.textanalytics.models import (
TextLanguageDetectionInput,
LanguageDetectionTextInput,
LanguageInput,
AnalyzeTextLanguageDetectionResult,
)
def sample_detect_language():
# get settings
endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
credential = DefaultAzureCredential()
client = TextAnalysisClient(endpoint, credential=credential)
# Build input
text_a = (
"Sentences in different languages."
)
body = TextLanguageDetectionInput(
text_input=LanguageDetectionTextInput(
language_inputs=[LanguageInput(id="A", text=text_a)]
)
)
# Sync (non-LRO) call
result = client.analyze_text(body=body)
# Validate and print results
if not isinstance(result, AnalyzeTextLanguageDetectionResult):
print("Unexpected result type.")
return
if not result.results or not result.results.documents:
print("No documents in the response.")
return
for doc in result.results.documents:
print(f"\nDocument ID: {doc.id}")
if doc.detected_language:
dl = doc.detected_language
print(f"Detected language: {dl.name} ({dl.iso6391_name})")
print(f"Confidence score: {dl.confidence_score}")
else:
print("No detected language returned for this document.")
```
<!-- END SNIPPET -->
The returned response is a heterogeneous list of result and error objects: list[[DetectLanguageResult][detect_language_result], [DocumentError][document_error]]
Please refer to the service documentation for a conceptual discussion of [language detection][language_detection]
and [language and regional support][language_and_regional_support].
### Healthcare Entities Analysis
[Long-running operation](#long-running-operations) [begin_analyze_healthcare_entities][analyze_healthcare_entities] extracts entities recognized within the healthcare domain, and identifies relationships between entities within the input document and links to known sources of information in various well known databases, such as UMLS, CHV, MSH, etc.
<!-- SNIPPET:sample_analyze_healthcare_entities.analyze_healthcare_entities -->
```python
import os
from azure.identity import DefaultAzureCredential
from azure.ai.textanalytics import TextAnalysisClient
from azure.ai.textanalytics.models import (
MultiLanguageTextInput,
MultiLanguageInput,
AnalyzeTextOperationAction,
HealthcareLROTask,
HealthcareLROResult,
)
def sample_analyze_healthcare_entities():
# get settings
endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
credential = DefaultAzureCredential()
client = TextAnalysisClient(endpoint, credential=credential)
# Build input
text_a = "Prescribed 100mg ibuprofen, taken twice daily."
text_input = MultiLanguageTextInput(
multi_language_inputs=[
MultiLanguageInput(id="A", text=text_a, language="en"),
]
)
actions: list[AnalyzeTextOperationAction] = [
HealthcareLROTask(
name="Healthcare Operation",
),
]
# Start long-running operation (sync) – poller returns ItemPaged[TextActions]
poller = client.begin_analyze_text_job(
text_input=text_input,
actions=actions,
)
# Operation metadata (pre-final)
print(f"Operation ID: {poller.details.get('operation_id')}")
# Wait for completion and get pageable of TextActions
paged_actions = poller.result()
# Final-state metadata
d = poller.details
print(f"Job ID: {d.get('job_id')}")
print(f"Status: {d.get('status')}")
print(f"Created: {d.get('created_date_time')}")
print(f"Last Updated: {d.get('last_updated_date_time')}")
if d.get("expiration_date_time"):
print(f"Expires: {d.get('expiration_date_time')}")
if d.get("display_name"):
print(f"Display Name: {d.get('display_name')}")
# Iterate results (sync pageable)
for actions_page in paged_actions:
print(
f"Completed: {actions_page.completed}, "
f"In Progress: {actions_page.in_progress}, "
f"Failed: {actions_page.failed}, "
f"Total: {actions_page.total}"
)
for op_result in actions_page.items_property or []:
if isinstance(op_result, HealthcareLROResult):
print(f"\nAction Name: {op_result.task_name}")
print(f"Action Status: {op_result.status}")
print(f"Kind: {op_result.kind}")
hc_result = op_result.results
for doc in (hc_result.documents or []):
print(f"\nDocument ID: {doc.id}")
# Entities
print("Entities:")
for entity in (doc.entities or []):
print(f" Text: {entity.text}")
print(f" Category: {entity.category}")
print(f" Offset: {entity.offset}")
print(f" Length: {entity.length}")
print(f" Confidence score: {entity.confidence_score}")
if entity.links:
for link in entity.links:
print(f" Link ID: {link.id}")
print(f" Data source: {link.data_source}")
print()
# Relations
print("Relations:")
for relation in (doc.relations or []):
print(f" Relation type: {relation.relation_type}")
for rel_entity in (relation.entities or []):
print(f" Role: {rel_entity.role}")
print(f" Ref: {rel_entity.ref}")
print()
else:
# Other action kinds, if present
try:
print(
f"\n[Non-healthcare action] name={op_result.task_name}, "
f"status={op_result.status}, kind={op_result.kind}"
)
except Exception:
print("\n[Non-healthcare action present]")
```
<!-- END SNIPPET -->
Note: Healthcare Entities Analysis is only available with API version v3.1 and newer.
### Multiple Analysis
[Long-running operation](#long-running-operations) [begin_analyze_actions][analyze_actions] performs multiple analyses over one set of documents in a single request. Currently it is supported using any combination of the following Language APIs in a single request:
- Entities Recognition
- PII Entities Recognition
- Linked Entity Recognition
- Key Phrase Extraction
- Sentiment Analysis
- Custom Entity Recognition (API version 2022-05-01 and newer)
- Custom Single Label Classification (API version 2022-05-01 and newer)
- Custom Multi Label Classification (API version 2022-05-01 and newer)
- Healthcare Entities Analysis (API version 2022-05-01 and newer)
- Extractive Summarization (API version 2023-04-01 and newer)
- Abstractive Summarization (API version 2023-04-01 and newer)
<!-- SNIPPET:sample_analyze_actions.analyze -->
```python
import os
from azure.identity import DefaultAzureCredential
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalysisClient
from azure.ai.textanalytics.models import (
MultiLanguageTextInput,
MultiLanguageInput,
EntitiesLROTask,
KeyPhraseLROTask,
EntityRecognitionOperationResult,
KeyPhraseExtractionOperationResult,
EntityTag,
)
def sample_analyze():
# get settings
endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
credential = DefaultAzureCredential()
client = TextAnalysisClient(endpoint, credential=credential)
text_a = (
"We love this trail and make the trip every year. The views are breathtaking and well worth the hike!"
" Yesterday was foggy though, so we missed the spectacular views. We tried again today and it was"
" amazing. Everyone in my family liked the trail although it was too challenging for the less"
" athletic among us. Not necessarily recommended for small children. A hotel close to the trail"
" offers services for childcare in case you want that."
)
text_b = (
"Sentences in different languages."
)
text_c = (
"That was the best day of my life! We went on a 4 day trip where we stayed at Hotel Foo. They had"
" great amenities that included an indoor pool, a spa, and a bar. The spa offered couples massages"
" which were really good. The spa was clean and felt very peaceful. Overall the whole experience was"
" great. We will definitely come back."
)
text_d = ""
# Prepare documents (you can batch multiple docs)
text_input = MultiLanguageTextInput(
multi_language_inputs=[
MultiLanguageInput(id="A", text=text_a, language="en"),
MultiLanguageInput(id="B", text=text_b, language="es"),
MultiLanguageInput(id="C", text=text_c, language="en"),
MultiLanguageInput(id="D", text=text_d),
]
)
actions = [
EntitiesLROTask(name="EntitiesOperationActionSample"),
KeyPhraseLROTask(name="KeyPhraseOperationActionSample"),
]
# Submit a multi-action analysis job (LRO)
poller = client.begin_analyze_text_job(text_input=text_input, actions=actions)
paged_actions = poller.result()
# Iterate through each action's results
for action_result in paged_actions:
print() # spacing between action blocks
# --- Entities ---
if isinstance(action_result, EntityRecognitionOperationResult):
print("=== Entity Recognition Results ===")
for ent_doc in action_result.results.documents:
print(f'Result for document with Id = "{ent_doc.id}":')
print(f" Recognized {len(ent_doc.entities)} entities:")
for entity in ent_doc.entities:
print(f" Text: {entity.text}")
print(f" Offset: {entity.offset}")
print(f" Length: {entity.length}")
print(f" Category: {entity.category}")
if hasattr(entity, "type") and entity.type is not None:
print(f" Type: {entity.type}")
if hasattr(entity, "subcategory") and entity.subcategory:
print(f" Subcategory: {entity.subcategory}")
if hasattr(entity, "tags") and entity.tags:
print(" Tags:")
for tag in entity.tags:
if isinstance(tag, EntityTag):
print(f" TagName: {tag.name}")
print(f" TagConfidenceScore: {tag.confidence_score}")
print(f" Confidence score: {entity.confidence_score}")
print()
for err in action_result.results.errors:
print(f' Error in document: {err.id}!')
print(f" Document error: {err.error}")
# --- Key Phrases ---
elif isinstance(action_result, KeyPhraseExtractionOperationResult):
print("=== Key Phrase Extraction Results ===")
for kp_doc in action_result.results.documents:
print(f'Result for document with Id = "{kp_doc.id}":')
for kp in kp_doc.key_phrases:
print(f" {kp}")
print()
for err in action_result.results.errors:
print(f' Error in document: {err.id}!')
print(f" Document error: {err.error}")
```
<!-- END SNIPPET -->
The returned response is an object encapsulating multiple iterables, each representing results of individual analyses.
Note: Multiple analysis is available in API version v3.1 and newer.
## Optional Configuration
Optional keyword arguments can be passed in at the client and per-operation level.
The azure-core [reference documentation][azure_core_ref_docs]
describes available configurations for retries, logging, transport protocols, and more.
## Troubleshooting
### General
The Text Analytics client will raise exceptions defined in [Azure Core][azure_core].
### Logging
This library uses the standard
[logging][python_logging] library for logging.
Basic information about HTTP sessions (URLs, headers, etc.) is logged at INFO
level.
Detailed DEBUG level logging, including request/response bodies and unredacted
headers, can be enabled on a client with the `logging_enable` keyword argument:
```python
import sys
import logging
from azure.identity import DefaultAzureCredential
from azure.ai.textanalytics import TextAnalyticsClient
# Create a logger for the 'azure' SDK
logger = logging.getLogger('azure')
logger.setLevel(logging.DEBUG)
# Configure a console output
handler = logging.StreamHandler(stream=sys.stdout)
logger.addHandler(handler)
endpoint = "https://<resource-name>.cognitiveservices.azure.com/"
credential = DefaultAzureCredential()
# This client will log detailed information about its HTTP sessions, at DEBUG level
text_analytics_client = TextAnalyticsClient(endpoint, credential, logging_enable=True)
result = text_analytics_client.analyze_sentiment(["I did not like the restaurant. The food was too spicy."])
```
Similarly, `logging_enable` can enable detailed logging for a single operation,
even when it isn't enabled for the client:
```python
result = text_analytics_client.analyze_sentiment(documents, logging_enable=True)
```
## Next steps
### More sample code
These code samples show common scenario operations with the Azure Text Analytics client library.
Authenticate the client with a Cognitive Services/Language service API key or a token credential from [azure-identity][azure_identity]:
- [sample_authentication.py][sample_authentication] ([async version][sample_authentication_async])
Common scenarios
- Analyze sentiment: [sample_analyze_sentiment.py][analyze_sentiment_sample] ([async version][analyze_sentiment_sample_async])
- Recognize entities: [sample_recognize_entities.py][recognize_entities_sample] ([async version][recognize_entities_sample_async])
- Recognize personally identifiable information: [sample_recognize_pii_entities.py][recognize_pii_entities_sample] ([async version][recognize_pii_entities_sample_async])
- Recognize linked entities: [sample_recognize_linked_entities.py][recognize_linked_entities_sample] ([async version][recognize_linked_entities_sample_async])
- Extract key phrases: [sample_extract_key_phrases.py][extract_key_phrases_sample] ([async version][extract_key_phrases_sample_async])
- Detect language: [sample_detect_language.py][detect_language_sample] ([async version][detect_language_sample_async])
- Healthcare Entities Analysis: [sample_analyze_healthcare_entities.py][analyze_healthcare_entities_sample] ([async version][analyze_healthcare_entities_sample_async])
- Multiple Analysis: [sample_analyze_actions.py][analyze_sample] ([async version][analyze_sample_async])
- Custom Entity Recognition: [sample_recognize_custom_entities.py][recognize_custom_entities_sample] ([async_version][recognize_custom_entities_sample_async])
- Custom Single Label Classification: [sample_single_label_classify.py][single_label_classify_sample] ([async_version][single_label_classify_sample_async])
- Custom Multi Label Classification: [sample_multi_label_classify.py][multi_label_classify_sample] ([async_version][multi_label_classify_sample_async])
- Extractive text summarization: [sample_extract_summary.py][extract_summary_sample] ([async version][extract_summary_sample_async])
- Abstractive text summarization: [sample_abstract_summary.py][abstract_summary_sample] ([async version][abstract_summary_sample_async])
### Additional documentation
For more extensive documentation on Azure Cognitive Service for Language, see the [Language Service documentation][language_product_documentation] on learn.microsoft.com.
## Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit [cla.microsoft.com][cla].
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct][code_of_conduct]. For more information see the [Code of Conduct FAQ][coc_faq] or contact [opencode@microsoft.com][coc_contact] with any additional questions or comments.
<!-- LINKS -->
[source_code]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics
[ta_pypi]: https://pypi.org/project/azure-ai-textanalytics/
[ta_ref_docs]: https://aka.ms/azsdk-python-textanalytics-ref-docs
[ta_samples]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples
[language_product_documentation]: https://learn.microsoft.com/azure/cognitive-services/language-service
[azure_subscription]: https://azure.microsoft.com/free/
[ta_or_cs_resource]: https://learn.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Cwindows
[pip]: https://pypi.org/project/pip/
[azure_portal_create_ta_resource]: https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
[azure_cli]: https://learn.microsoft.com/cli/azure
[azure_cli_create_ta_resource]: https://learn.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account-cli
[multi_and_single_service]: https://learn.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Cwindows
[azure_cli_endpoint_lookup]: https://learn.microsoft.com/cli/azure/cognitiveservices/account?view=azure-cli-latest#az-cognitiveservices-account-show
[azure_portal_get_endpoint]: https://learn.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Cwindows#get-the-keys-for-your-resource
[cognitive_authentication]: https://learn.microsoft.com/azure/cognitive-services/authentication
[cognitive_authentication_api_key]: https://learn.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Cwindows#get-the-keys-for-your-resource
[install_azure_identity]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity#install-the-package
[register_aad_app]: https://learn.microsoft.com/azure/cognitive-services/authentication#assign-a-role-to-a-service-principal
[grant_role_access]: https://learn.microsoft.com/azure/cognitive-services/authentication#assign-a-role-to-a-service-principal
[cognitive_custom_subdomain]: https://learn.microsoft.com/azure/cognitive-services/cognitive-services-custom-subdomains
[custom_subdomain]: https://learn.microsoft.com/azure/cognitive-services/authentication#create-a-resource-with-a-custom-subdomain
[cognitive_authentication_aad]: https://learn.microsoft.com/azure/cognitive-services/authentication#authenticate-with-azure-active-directory
[azure_identity_credentials]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity#credentials
[default_azure_credential]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity#defaultazurecredential
[service_limits]: https://aka.ms/azsdk/textanalytics/data-limits
[azure-key-credential]: https://aka.ms/azsdk-python-core-azurekeycredential
[document_error]: https://aka.ms/azsdk-python-textanalytics-documenterror
[detect_language_result]: https://aka.ms/azsdk-python-textanalytics-detectlanguageresult
[recognize_entities_result]: https://aka.ms/azsdk-python-textanalytics-recognizeentitiesresult
[recognize_pii_entities_result]: https://aka.ms/azsdk-python-textanalytics-recognizepiientitiesresult
[recognize_linked_entities_result]: https://aka.ms/azsdk-python-textanalytics-recognizelinkedentitiesresult
[analyze_sentiment_result]: https://aka.ms/azsdk-python-textanalytics-analyzesentimentresult
[extract_key_phrases_result]: https://aka.ms/azsdk-python-textanalytics-extractkeyphrasesresult
[text_document_input]: https://aka.ms/azsdk-python-textanalytics-textdocumentinput
[detect_language_input]: https://aka.ms/azsdk-python-textanalytics-detectlanguageinput
[text_analytics_client]: https://aka.ms/azsdk-python-textanalytics-textanalyticsclient
[analyze_sentiment]: https://aka.ms/azsdk-python-textanalytics-analyzesentiment
[analyze_actions]: https://aka.ms/azsdk/python/docs/ref/textanalytics#azure.ai.textanalytics.TextAnalyticsClient.begin_analyze_actions
[analyze_healthcare_entities]: https://aka.ms/azsdk/python/docs/ref/textanalytics#azure.ai.textanalytics.TextAnalyticsClient.begin_analyze_healthcare_entities
[recognize_entities]: https://aka.ms/azsdk-python-textanalytics-recognizeentities
[recognize_pii_entities]: https://aka.ms/azsdk-python-textanalytics-recognizepiientities
[recognize_linked_entities]: https://aka.ms/azsdk-python-textanalytics-recognizelinkedentities
[extract_key_phrases]: https://aka.ms/azsdk-python-textanalytics-extractkeyphrases
[detect_language]: https://aka.ms/azsdk-python-textanalytics-detectlanguage
[language_detection]: https://learn.microsoft.com/azure/cognitive-services/language-service/language-detection/overview
[language_and_regional_support]: https://learn.microsoft.com/azure/cognitive-services/language-service/language-detection/language-support
[sentiment_analysis]: https://learn.microsoft.com/azure/cognitive-services/language-service/sentiment-opinion-mining/overview
[key_phrase_extraction]: https://learn.microsoft.com/azure/cognitive-services/language-service/key-phrase-extraction/overview
[linked_entities_categories]: https://aka.ms/taner
[linked_entity_recognition]: https://learn.microsoft.com/azure/cognitive-services/language-service/entity-linking/overview
[pii_entity_categories]: https://aka.ms/azsdk/language/pii
[named_entity_recognition]: https://learn.microsoft.com/azure/cognitive-services/language-service/named-entity-recognition/overview
[named_entity_categories]: https://aka.ms/taner
[azure_core_ref_docs]: https://aka.ms/azsdk-python-core-policies
[azure_core]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md
[azure_identity]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity
[python_logging]: https://docs.python.org/3/library/logging.html
[sample_authentication]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/sample_authentication.py
[sample_authentication_async]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/async_samples/sample_authentication_async.py
[detect_language_sample]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/sample_detect_language.py
[detect_language_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/async_samples/sample_detect_language_async.py
[analyze_sentiment_sample]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/sample_analyze_sentiment.py
[analyze_sentiment_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/async_samples/sample_analyze_sentiment_async.py
[extract_key_phrases_sample]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/sample_extract_key_phrases.py
[extract_key_phrases_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/async_samples/sample_extract_key_phrases_async.py
[recognize_entities_sample]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/sample_recognize_entities.py
[recognize_entities_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/async_samples/sample_recognize_entities_async.py
[recognize_linked_entities_sample]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/sample_recognize_linked_entities.py
[recognize_linked_entities_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/async_samples/sample_recognize_linked_entities_async.py
[recognize_pii_entities_sample]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/sample_recognize_pii_entities.py
[recognize_pii_entities_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/async_samples/sample_recognize_pii_entities_async.py
[analyze_healthcare_entities_sample]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/sample_analyze_healthcare_entities.py
[analyze_healthcare_entities_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/async_samples/sample_analyze_healthcare_entities_async.py
[analyze_sample]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/sample_analyze_actions.py
[analyze_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/async_samples/sample_analyze_actions_async.py
[recognize_custom_entities_sample]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/sample_recognize_custom_entities.py
[recognize_custom_entities_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/async_samples/sample_recognize_custom_entities_async.py
[single_label_classify_sample]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/sample_single_label_classify.py
[single_label_classify_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/async_samples/sample_single_label_classify_async.py
[multi_label_classify_sample]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/sample_multi_label_classify.py
[multi_label_classify_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/async_samples/sample_multi_label_classify_async.py
[healthcare_action_sample]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/sample_analyze_healthcare_action.py
[extract_summary_sample]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/sample_extract_summary.py
[extract_summary_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/async_samples/sample_extract_summary_async.py
[abstract_summary_sample]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/sample_abstract_summary.py
[abstract_summary_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/cognitivelanguage/azure-ai-textanalytics/samples/async_samples/sample_abstract_summary_async.py
[cla]: https://cla.microsoft.com
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[coc_faq]: https://opensource.microsoft.com/codeofconduct/faq/
[coc_contact]: mailto:opencode@microsoft.com
|