File: sample_multi_label_classify.py

package info (click to toggle)
python-azure 20251014%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 766,472 kB
  • sloc: python: 6,314,744; ansic: 804; javascript: 287; makefile: 198; sh: 198; xml: 109
file content (137 lines) | stat: -rw-r--r-- 4,625 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_text_custom_multi_label_classification.py

DESCRIPTION:
    This sample demonstrates how to run a **custom multi-label classification** action over text.

USAGE:
    python sample_text_custom_multi_label_classification.py

REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
    AZURE_TEXT_ENDPOINT
    AZURE_CLIENT_ID
    AZURE_TENANT_ID
    AZURE_CLIENT_SECRET

NOTE:
    If you want to use AzureKeyCredential instead, set:
      - AZURE_TEXT_ENDPOINT
      - AZURE_TEXT_KEY
OPTIONAL ENV VARS:
    PROJECT_NAME        # defaults to "<project-name>"
    DEPLOYMENT_NAME     # defaults to "<deployment-name>"
"""

# [START text_custom_multi_label_classification]
import os

from azure.identity import DefaultAzureCredential
from azure.ai.textanalytics import TextAnalysisClient
from azure.ai.textanalytics.models import (
    MultiLanguageTextInput,
    MultiLanguageInput,
    CustomMultiLabelClassificationActionContent,
    CustomMultiLabelClassificationOperationAction,
    CustomMultiLabelClassificationOperationResult,
)


def sample_text_custom_multi_label_classification():
    # get settings
    endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
    project_name = os.environ.get("PROJECT_NAME", "<project-name>")
    deployment_name = os.environ.get("DEPLOYMENT_NAME", "<deployment-name>")
    credential = DefaultAzureCredential()

    client = TextAnalysisClient(endpoint, credential=credential)

    # Build input
    text_a = (
        "I need a reservation for an indoor restaurant in China. Please don't stop the music. "
        "Play music and add it to my playlist."
    )

    text_input = MultiLanguageTextInput(
        multi_language_inputs=[MultiLanguageInput(id="A", text=text_a, language="en")]
    )

    action = CustomMultiLabelClassificationOperationAction(
        name="Custom Multi-Label Classification",
        action_content=CustomMultiLabelClassificationActionContent(
            project_name=project_name,
            deployment_name=deployment_name,
        ),
    )

    # Start long-running operation (sync)
    poller = client.begin_analyze_text_job(
        text_input=text_input,
        actions=[action],
    )

    # Operation metadata (pre-final)
    print(f"Operation ID: {poller.details.get('operation_id')}")

    # Wait for completion and get pageable of TextActions
    paged_actions = poller.result()

    # Final-state metadata
    d = poller.details
    print(f"Job ID: {d.get('job_id')}")
    print(f"Status: {d.get('status')}")
    print(f"Created: {d.get('created_date_time')}")
    print(f"Last Updated: {d.get('last_updated_date_time')}")
    if d.get("expiration_date_time"):
        print(f"Expires: {d.get('expiration_date_time')}")
    if d.get("display_name"):
        print(f"Display Name: {d.get('display_name')}")

    # Iterate results (sync pageable)
    for actions_page in paged_actions:
        # Page-level counts if available
        print(
            f"Completed: {actions_page.completed}, "
            f"In Progress: {actions_page.in_progress}, "
            f"Failed: {actions_page.failed}, "
            f"Total: {actions_page.total}"
        )

        # Items are the individual operation results
        for op_result in actions_page.items_property or []:
            if isinstance(op_result, CustomMultiLabelClassificationOperationResult):
                print(f"\nAction Name: {op_result.task_name}")
                print(f"Action Status: {op_result.status}")
                print(f"Kind: {op_result.kind}")

                results = op_result.results
                for doc in (results.documents or []):
                    print(f"\nDocument ID: {doc.id}")
                    print("Predicted Labels:")
                    for cls_item in (doc.class_property or []):
                        print(f"  Category: {cls_item.category}")
                        print(f"  Confidence score: {cls_item.confidence_score}")
            else:
                # Other action kinds, if present
                try:
                    print(
                        f"\n[Non-CMLC action] name={op_result.task_name}, "
                        f"status={op_result.status}, kind={op_result.kind}"
                    )
                except Exception:
                    print("\n[Non-CMLC action present]")

# [END text_custom_multi_label_classification]


def main():
    sample_text_custom_multi_label_classification()


if __name__ == "__main__":
    main()