1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
|
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft.
# Licensed under the MIT License.
# ------------------------------------
"""
FILE: sample_text_custom_entities.py
DESCRIPTION:
This sample demonstrates how to run a **custom entity recognition** action over text.
USAGE:
python sample_text_custom_entities.py
REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
AZURE_TEXT_ENDPOINT
AZURE_CLIENT_ID
AZURE_TENANT_ID
AZURE_CLIENT_SECRET
NOTE:
If you want to use AzureKeyCredential instead, set:
- AZURE_TEXT_ENDPOINT
- AZURE_TEXT_KEY
OPTIONAL ENV VARS:
PROJECT_NAME # defaults to "<project-name>"
DEPLOYMENT_NAME # defaults to "<deployment-name>"
"""
# [START text_custom_entities]
import os
from azure.identity import DefaultAzureCredential
from azure.ai.textanalytics import TextAnalysisClient
from azure.ai.textanalytics.models import (
MultiLanguageTextInput,
MultiLanguageInput,
AnalyzeTextOperationAction,
CustomEntitiesActionContent,
CustomEntitiesLROTask,
CustomEntityRecognitionOperationResult,
)
def sample_text_custom_entities():
# settings
endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
project_name = os.environ.get("PROJECT_NAME", "<project-name>")
deployment_name = os.environ.get("DEPLOYMENT_NAME", "<deployment-name>")
credential = DefaultAzureCredential()
client = TextAnalysisClient(endpoint, credential=credential)
# input
text_a = (
"We love this trail and make the trip every year. The views are breathtaking and well worth the hike! "
"Yesterday was foggy though, so we missed the spectacular views. We tried again today and it was amazing."
)
text_input = MultiLanguageTextInput(
multi_language_inputs=[MultiLanguageInput(id="A", text=text_a, language="en")]
)
action_content = CustomEntitiesActionContent(
project_name=project_name,
deployment_name=deployment_name,
)
actions: list[AnalyzeTextOperationAction] = [
CustomEntitiesLROTask(name="Custom Entities", parameters=action_content)
]
# LRO
poller = client.begin_analyze_text_job(text_input=text_input, actions=actions)
print(f"Operation ID: {poller.details.get('operation_id')}")
paged_actions = poller.result()
d = poller.details
print(f"Job ID: {d.get('job_id')}")
print(f"Status: {d.get('status')}")
print(f"Created: {d.get('created_date_time')}")
print(f"Last Updated: {d.get('last_updated_date_time')}")
if d.get("expiration_date_time"):
print(f"Expires: {d.get('expiration_date_time')}")
if d.get("display_name"):
print(f"Display Name: {d.get('display_name')}")
for actions_page in paged_actions:
print(
f"Completed: {actions_page.completed}, In Progress: {actions_page.in_progress}, "
f"Failed: {actions_page.failed}, Total: {actions_page.total}"
)
for op_result in actions_page.items_property or []:
if isinstance(op_result, CustomEntityRecognitionOperationResult):
print(f"\nAction Name: {op_result.task_name}")
print(f"Action Status: {op_result.status}")
print(f"Kind: {op_result.kind}")
for doc in (op_result.results.documents or []):
print(f"Document ID: {doc.id}")
for entity in (doc.entities or []):
print(f" Text: {entity.text}")
print(f" Category: {entity.category}")
print(f" Offset: {entity.offset}, Length: {entity.length}")
print(f" Confidence score: {entity.confidence_score}\n")
# [END text_custom_entities]
def main():
sample_text_custom_entities()
if __name__ == "__main__":
main()
|