File: test_vector_policy_async.py

package info (click to toggle)
python-azure 20251014%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 766,472 kB
  • sloc: python: 6,314,744; ansic: 804; javascript: 287; makefile: 198; sh: 198; xml: 109
file content (470 lines) | stat: -rw-r--r-- 19,471 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# The MIT License (MIT)
# Copyright (c) Microsoft Corporation. All rights reserved.

import unittest
import uuid

import pytest

import azure.cosmos.exceptions as exceptions
import test_config
from azure.cosmos import CosmosClient as CosmosSyncClient
from azure.cosmos import PartitionKey
from azure.cosmos.aio import CosmosClient


@pytest.mark.cosmosSearchQuery
class TestVectorPolicyAsync(unittest.IsolatedAsyncioTestCase):
    host = test_config.TestConfig.host
    masterKey = test_config.TestConfig.masterKey
    connectionPolicy = test_config.TestConfig.connectionPolicy

    client: CosmosClient = None
    cosmos_sync_client: CosmosSyncClient = None

    TEST_DATABASE_ID = test_config.TestConfig.TEST_DATABASE_ID

    @classmethod
    def setUpClass(cls):
        if (cls.masterKey == '[YOUR_KEY_HERE]' or
                cls.host == '[YOUR_ENDPOINT_HERE]'):
            raise Exception(
                "You must specify your Azure Cosmos account values for "
                "'masterKey' and 'host' at the top of this class to run the "
                "tests.")
        cls.cosmos_sync_client = CosmosSyncClient(cls.host, cls.masterKey)
        cls.test_db = cls.cosmos_sync_client.create_database(str(uuid.uuid4()))

    @classmethod
    def tearDownClass(cls):
        cls.cosmos_sync_client.delete_database(cls.test_db.id)

    async def asyncSetUp(self):
        self.client = CosmosClient(self.host, self.masterKey)
        self.test_db = self.client.get_database_client(self.test_db.id)

    async def asyncTearDown(self):
        await self.client.close()

    async def test_create_vector_embedding_container_async(self):
        indexing_policy = {
            "vectorIndexes": [
                {"path": "/vector1", "type": "flat"},

                {"path": "/vector2", "type": "quantizedFlat", "quantizationByteSize": 64, "vectorIndexShardKey": ["/city"]},

                {"path": "/vector3", "type": "diskANN", "quantizationByteSize": 8, "indexingSearchListSize": 50}
            ]
        }
        vector_embedding_policy = {
            "vectorEmbeddings": [
                {
                    "path": "/vector1",
                    "dataType": "float32",
                    "dimensions": 256,
                    "distanceFunction": "euclidean"
                },
                {
                    "path": "/vector2",
                    "dataType": "int8",
                    "dimensions": 200,
                    "distanceFunction": "dotproduct"
                },
                {
                    "path": "/vector3",
                    "dataType": "uint8",
                    "dimensions": 400,
                    "distanceFunction": "cosine"
                }
            ]
        }
        container_id = "vector_container" + str(uuid.uuid4())
        created_container = await self.test_db.create_container(
            id=container_id,
            partition_key=PartitionKey(path="/id"),
            vector_embedding_policy=vector_embedding_policy,
            indexing_policy=indexing_policy
        )
        properties = await created_container.read()
        assert properties["vectorEmbeddingPolicy"] == vector_embedding_policy
        assert properties["indexingPolicy"]["vectorIndexes"] == indexing_policy["vectorIndexes"]
        await self.test_db.delete_container(container_id)

    async def test_replace_vector_indexing_policy_async(self):
        # Replace should work so long as the new indexing policy doesn't change the vector indexes, and as long as
        # the previously defined vector embedding policy is also provided.
        vector_embedding_policy = {
            "vectorEmbeddings": [
                {
                    "path": "/vector1",
                    "dataType": "float32",
                    "dimensions": 256,
                    "distanceFunction": "euclidean"
                }
            ]
        }
        indexing_policy = {
            "indexingMode": "consistent",
            "automatic": True,
            "includedPaths": [
                {
                    "path": "/*"
                }
            ],
            "excludedPaths": [
                {
                    "path": "/vector1/*"
                },
                {
                    "path": "/\"_etag\"/?"
                }
            ],
            "fullTextIndexes": [],
            "vectorIndexes": [
                {
                    "path": "/vector1",
                    "type": "diskANN",
                    "quantizationByteSize": 128,
                    "indexingSearchListSize": 100
                }
            ]
        }
        container_id = "vector_container" + str(uuid.uuid4())
        created_container = await self.test_db.create_container(
            id=container_id,
            partition_key=PartitionKey(path="/id"),
            indexing_policy=indexing_policy,
            vector_embedding_policy=vector_embedding_policy
        )
        new_indexing_policy = {
            "indexingMode": "consistent",
            "automatic": True,
            "includedPaths": [
                {"path": "/color/?"},
                {"path": "/description/?"},
                {"path": "/cost/?"}
            ],
            "excludedPaths": [
                {"path": "/*"},
                {"path": "/vector1/*"},
                {"path": "/\"_etag\"/?"}
            ],
            "fullTextIndexes": [],
            "vectorIndexes": [
                {
                    "path": "/vector1",
                    "type": "diskANN",
                    "quantizationByteSize": 128,
                    "indexingSearchListSize": 100
                }]
        }
        await self.test_db.replace_container(
            created_container,
            PartitionKey(path="/id"),
            vector_embedding_policy=vector_embedding_policy,
            indexing_policy=new_indexing_policy)
        properties = await created_container.read()
        assert properties["vectorEmbeddingPolicy"] == vector_embedding_policy
        assert properties["indexingPolicy"]["vectorIndexes"] == indexing_policy["vectorIndexes"]
        await self.test_db.delete_container(container_id)

    async def test_fail_create_vector_indexing_policy_async(self):
        vector_embedding_policy = {
            "vectorEmbeddings": [
                {
                    "path": "/vector1",
                    "dataType": "float32",
                    "dimensions": 256,
                    "distanceFunction": "euclidean"
                },
                {
                    "path": "/vector2",
                    "dataType": "int8",
                    "dimensions": 200,
                    "distanceFunction": "dotproduct"
                }
            ]
        }

        # Pass a vector indexing policy without embedding policy
        indexing_policy = {
            "vectorIndexes": [
                {"path": "/vector1", "type": "flat"}]
        }
        try:
            await self.test_db.create_container(
                id='vector_container',
                partition_key=PartitionKey(path="/id"),
                indexing_policy=indexing_policy
            )
            pytest.fail("Container creation should have failed for lack of embedding policy.")
        except exceptions.CosmosHttpResponseError as e:
            assert e.status_code == 400
            assert "vector1 not matching in Embedding's path" in e.http_error_message

        # Pass a vector indexing policy with an invalid type
        indexing_policy = {
            "vectorIndexes": [
                {"path": "/vector1", "type": "notFlat"}]
        }
        try:
            await self.test_db.create_container(
                id='vector_container',
                partition_key=PartitionKey(path="/id"),
                indexing_policy=indexing_policy,
                vector_embedding_policy=vector_embedding_policy
            )
            pytest.fail("Container creation should have failed for wrong index type.")
        except exceptions.CosmosHttpResponseError as e:
            assert e.status_code == 400
            assert "Index Type::notFlat is invalid" in e.http_error_message

        # Pass a vector indexing policy with non-matching path
        indexing_policy = {
            "vectorIndexes": [
                {"path": "/vector3", "type": "flat"}]
        }
        try:
            await self.test_db.create_container(
                id='vector_container',
                partition_key=PartitionKey(path="/id"),
                indexing_policy=indexing_policy,
                vector_embedding_policy=vector_embedding_policy
            )
            pytest.fail("Container creation should have failed for index mismatch.")
        except exceptions.CosmosHttpResponseError as e:
            assert e.status_code == 400
            assert "vector3 not matching in Embedding's path" in e.http_error_message

        # Pass a vector indexing policy with wrong quantizationByteSize value
        indexing_policy = {
            "vectorIndexes": [
                {"path": "/vector1", "type": "quantizedFlat", "quantizationByteSize": 0}]
        }
        try:
            await self.test_db.create_container(
                id='vector_container',
                partition_key=PartitionKey(path="/id"),
                indexing_policy=indexing_policy,
                vector_embedding_policy=vector_embedding_policy
            )
            pytest.fail("Container creation should have failed for value mismatch.")
        except exceptions.CosmosHttpResponseError as e:
            assert e.status_code == 400
            assert "The Vector Indexing Policy parameter QuantizationByteSize value :: 0 is out of range. The allowed range is between 1 and 256." \
                   in e.http_error_message

        # Pass a vector indexing policy with wrong indexingSearchListSize value
        indexing_policy = {
            "vectorIndexes": [
                {"path": "/vector1", "type": "diskANN", "indexingSearchListSize": 5}]
        }
        try:
            await self.test_db.create_container(
                id='vector_container',
                partition_key=PartitionKey(path="/id"),
                indexing_policy=indexing_policy,
                vector_embedding_policy=vector_embedding_policy
            )
            pytest.fail("Container creation should have failed for value mismatch.")
        except exceptions.CosmosHttpResponseError as e:
            assert e.status_code == 400
            assert "IndexingSearchListSize value :: 5 is out of range. The allowed range is between 25 and 500." \
                   in e.http_error_message

        # Pass a vector indexing policy with wrong vectorIndexShardKey value
        indexing_policy = {
            "vectorIndexes": [
                {"path": "/vector2", "type": "diskANN", "vectorIndexShardKey": ["country"]}]
        }
        try:
            await self.test_db.create_container(
                id='vector_container',
                partition_key=PartitionKey(path="/id"),
                indexing_policy=indexing_policy,
                vector_embedding_policy=vector_embedding_policy
            )
            pytest.fail("Container creation should have failed for value mismatch.")
        except exceptions.CosmosHttpResponseError as e:
            assert e.status_code == 400
            assert "The Vector Indexing Policy has an invalid Shard Path: country." in e.http_error_message

        # Pass a vector indexing policy with too many shard paths
        indexing_policy = {
            "vectorIndexes": [
                {"path": "/vector2", "type": "diskANN", "vectorIndexShardKey": ["/country", "/city", "/zipcode"]}]
        }
        try:
            await self.test_db.create_container(
                id='vector_container',
                partition_key=PartitionKey(path="/id"),
                indexing_policy=indexing_policy,
                vector_embedding_policy=vector_embedding_policy
            )
            pytest.fail("Container creation should have failed for value mismatch.")
        except exceptions.CosmosHttpResponseError as e:
            assert e.status_code == 400
            assert "The number of shard paths defined in the Vector Indexing Policy: 3 exceeds the maximum: 1." \
                   in e.http_error_message

    async def test_fail_replace_vector_indexing_policy_async(self):
        vector_embedding_policy = {
            "vectorEmbeddings": [
                {
                    "path": "/vector1",
                    "dataType": "float32",
                    "dimensions": 256,
                    "distanceFunction": "euclidean"
                }]}
        indexing_policy = {
            "vectorIndexes": [
                {"path": "/vector1", "type": "flat"}]
        }
        container_id = "vector_container" + str(uuid.uuid4())
        created_container = await self.test_db.create_container(
            id=container_id,
            partition_key=PartitionKey(path="/id"),
            indexing_policy=indexing_policy,
            vector_embedding_policy=vector_embedding_policy
        )
        # don't provide vector embedding policy
        try:
            await self.test_db.replace_container(
                created_container,
                PartitionKey(path="/id"),
                indexing_policy=indexing_policy)
            pytest.fail("Container replace should have failed for missing embedding policy.")
        except exceptions.CosmosHttpResponseError as e:
            assert e.status_code == 400
            assert ("The Vector Indexing Policy's path::/vector1 not matching in Embedding's path."
                    in e.http_error_message)
        # don't provide vector indexing policy
        try:
            await self.test_db.replace_container(
                created_container,
                PartitionKey(path="/id"),
                vector_embedding_policy=vector_embedding_policy)
            pytest.fail("Container replace should have failed for missing indexing policy.")
        except exceptions.CosmosHttpResponseError as e:
            assert e.status_code == 400
            assert ("The Vector Indexing Policy cannot be changed in Collection Replace."
                    in e.http_error_message)
        # using a new indexing policy
        new_indexing_policy = {
            "vectorIndexes": [
                {"path": "/vector1", "type": "quantizedFlat"}]
        }
        try:
            await self.test_db.replace_container(
                created_container,
                PartitionKey(path="/id"),
                vector_embedding_policy=vector_embedding_policy,
                indexing_policy=new_indexing_policy)
            pytest.fail("Container replace should have failed for new indexing policy.")
        except exceptions.CosmosHttpResponseError as e:
            assert e.status_code == 400
            assert ("Paths in existing vector indexing policy cannot be modified in Collection Replace"
                    in e.http_error_message)
        # using a new vector embedding policy
        new_embedding_policy = {
            "vectorEmbeddings": [
                {
                    "path": "/vector1",
                    "dataType": "float32",
                    "dimensions": 384,
                    "distanceFunction": "euclidean"}]}
        try:
            await self.test_db.replace_container(
                created_container,
                PartitionKey(path="/id"),
                vector_embedding_policy=new_embedding_policy,
                indexing_policy=indexing_policy)
            pytest.fail("Container replace should have failed for new embedding policy.")
        except exceptions.CosmosHttpResponseError as e:
            assert e.status_code == 400
            assert ("The Vector Embedding Policy cannot be changed in Collection Replace"
                    in e.http_error_message)
        await self.test_db.delete_container(container_id)

    async def test_fail_create_vector_embedding_policy_async(self):
        # Using invalid data type
        vector_embedding_policy = {
            "vectorEmbeddings": [
                {
                    "path": "/vector1",
                    "dataType": "float33",
                    "dimensions": 256,
                    "distanceFunction": "euclidean"
                }]}
        try:
            await self.test_db.create_container(
                id='vector_container',
                partition_key=PartitionKey(path="/id"),
                vector_embedding_policy=vector_embedding_policy)
            pytest.fail("Container creation should have failed but succeeded.")
        except exceptions.CosmosHttpResponseError as e:
            assert e.status_code == 400
            assert "Vector Embedding Policy has an invalid DataType" in e.http_error_message

        # Using too many dimensions
        vector_embedding_policy = {
            "vectorEmbeddings": [
                {
                    "path": "/vector1",
                    "dataType": "float32",
                    "dimensions": 8000,
                    "distanceFunction": "euclidean"
                }]}
        try:
            await self.test_db.create_container(
                id='vector_container',
                partition_key=PartitionKey(path="/id"),
                vector_embedding_policy=vector_embedding_policy)
            pytest.fail("Container creation should have failed but succeeded.")
        except exceptions.CosmosHttpResponseError as e:
            assert e.status_code == 400
            assert "Vector Embedding Policy has Dimensions:8000 which is more than the maximum" \
                   " supported value" in e.http_error_message

        # Using negative dimensions
        vector_embedding_policy = {
            "vectorEmbeddings": [
                {
                    "path": "/vector1",
                    "dataType": "float32",
                    "dimensions": -1,
                    "distanceFunction": "euclidean"
                }]}
        try:
            await self.test_db.create_container(
                id='vector_container',
                partition_key=PartitionKey(path="/id"),
                vector_embedding_policy=vector_embedding_policy)
            pytest.fail("Container creation should have failed but succeeded.")
        except exceptions.CosmosHttpResponseError as e:
            assert e.status_code == 400
            assert "The Vector Embedding Policy has Dimensions:-1" in e.http_error_message

        # Using invalid distance function
        vector_embedding_policy = {
            "vectorEmbeddings": [
                {
                    "path": "/vector1",
                    "dataType": "float32",
                    "dimensions": 256,
                    "distanceFunction": "handMeasured"
                }]}
        try:
            await self.test_db.create_container(
                id='vector_container',
                partition_key=PartitionKey(path="/id"),
                vector_embedding_policy=vector_embedding_policy
            )
            pytest.fail("Container creation should have failed but succeeded.")
        except exceptions.CosmosHttpResponseError as e:
            assert e.status_code == 400
            assert "The Vector Embedding Policy has an invalid DistanceFunction:handMeasured" in e.http_error_message


if __name__ == '__main__':
    unittest.main()