1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
#!/usr/bin/env python
# --------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# --------------------------------------------------------------------------------------------
"""
Examples to show sending events with different options to an Event Hub partition.
WARNING: EventHubProducerClient and EventDataBatch are not thread-safe.
Do not share these instances between threads without proper thread-safe management using mechanisms like threading.Lock.
Note: Native async APIs should be used instead of running in a ThreadPoolExecutor, if possible.
"""
import time
import os
import threading
from concurrent.futures import ThreadPoolExecutor
from azure.eventhub import EventHubProducerClient, EventData
from azure.eventhub.exceptions import EventHubError
CONNECTION_STR = os.environ["EVENT_HUB_CONN_STR"]
EVENTHUB_NAME = os.environ["EVENT_HUB_NAME"]
# [START send_event_data_batch]
def send_event_data_batch(producer):
# Without specifying partition_id or partition_key
# the events will be distributed to available partitions via round-robin.
event_data_batch = producer.create_batch()
event_data_batch.add(EventData("Single message"))
producer.send_batch(event_data_batch)
# [END send_event_data_batch]
def send_event_data_batch_with_limited_size(producer):
# Without specifying partition_id or partition_key
# the events will be distributed to available partitions via round-robin.
event_data_batch_with_limited_size = producer.create_batch(max_size_in_bytes=1000)
while True:
try:
event_data_batch_with_limited_size.add(EventData("Message inside EventBatchData"))
except ValueError:
# EventDataBatch object reaches max_size.
# New EventDataBatch object can be created here to send more data.
break
producer.send_batch(event_data_batch_with_limited_size)
def send_event_data_batch_with_partition_key(producer):
# Specifying partition_key.
event_data_batch_with_partition_key = producer.create_batch(partition_key="pkey")
event_data_batch_with_partition_key.add(
EventData("Message will be sent to a partition determined by the partition key")
)
producer.send_batch(event_data_batch_with_partition_key)
def send_event_data_batch_with_partition_id(producer):
# Specifying partition_id.
event_data_batch_with_partition_id = producer.create_batch(partition_id="0")
event_data_batch_with_partition_id.add(EventData("Message will be sent to target-id partition"))
producer.send_batch(event_data_batch_with_partition_id)
def send_event_data_batch_with_properties(producer):
event_data_batch = producer.create_batch()
event_data = EventData("Message with properties")
event_data.properties = {"prop_key": "prop_value"}
event_data_batch.add(event_data)
producer.send_batch(event_data_batch)
def send_event_data_list(producer):
# If you know beforehand that the list of events you have will not exceed the
# size limits, you can use the `send_batch()` api directly without creating an EventDataBatch
# Without specifying partition_id or partition_key
# the events will be distributed to available partitions via round-robin.
event_data_list = [EventData("Event Data {}".format(i)) for i in range(10)]
try:
producer.send_batch(event_data_list)
except ValueError: # Size exceeds limit. This shouldn't happen if you make sure before hand.
print("Size of the event data list exceeds the size limit of a single send")
except EventHubError as eh_err:
print("Sending error: ", eh_err)
def send_concurrent_with_shared_client_and_lock():
"""
Example showing concurrent sending with a shared client using threading.Lock.
Note: Native async APIs should be used instead of running in a ThreadPoolExecutor, if possible.
"""
send_lock = threading.Lock()
producer = EventHubProducerClient.from_connection_string(
conn_str=CONNECTION_STR,
eventhub_name=EVENTHUB_NAME,
)
def send_with_lock(thread_id):
try:
# Use lock to ensure thread-safe sending
with send_lock:
batch = producer.create_batch()
batch.add(EventData(f"Synchronized message from thread {thread_id}"))
producer.send_batch(batch)
print(f"Thread {thread_id} sent synchronized message successfully")
except Exception as e:
print(f"Thread {thread_id} failed: {e}")
with producer:
with ThreadPoolExecutor(max_workers=3) as executor:
futures = [executor.submit(send_with_lock, i) for i in range(3)]
# Wait for all threads to complete
for future in futures:
future.result()
producer = EventHubProducerClient.from_connection_string(
conn_str=CONNECTION_STR,
eventhub_name=EVENTHUB_NAME,
)
start_time = time.time()
with producer:
send_event_data_batch(producer)
send_event_data_batch_with_limited_size(producer)
send_event_data_batch_with_partition_key(producer)
send_event_data_batch_with_partition_id(producer)
send_event_data_batch_with_properties(producer)
send_event_data_list(producer)
print("Send messages in {} seconds.".format(time.time() - start_time))
print("\nDemonstrating concurrent sending with shared client and locks...")
send_concurrent_with_shared_client_and_lock()
|