| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 
 | # coding: utf-8
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""
FILE: ml_samples_command_configurations.py
DESCRIPTION:
    These samples demonstrate different ways to configure Command jobs and components.
USAGE:
    python ml_samples_command_configurations.py
"""
import os
class CommandConfigurationOptions(object):
    def ml_command_config(self):
        from azure.ai.ml import MLClient
        from azure.identity import DefaultAzureCredential
        subscription_id = os.environ["AZURE_SUBSCRIPTION_ID"]
        resource_group = os.environ["RESOURCE_GROUP_NAME"]
        workspace_name = "test-ws1"
        credential = DefaultAzureCredential()
        ml_client = MLClient(credential, subscription_id, resource_group, workspace_name=workspace_name)
        from azure.ai.ml import Input, Output
        from azure.ai.ml.entities import CommandJob, CommandJobLimits
        # [START command_job_definition]
        command_job = CommandJob(
            code="./src",
            command="python train.py --ss {search_space.ss}",
            inputs={"input1": Input(path="trial.csv")},
            outputs={"default": Output(path="./foo")},
            compute="trial",
            environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu:33",
            limits=CommandJobLimits(timeout=120),
        )
        # [END command_job_definition]
        # [START command_function]
        from azure.ai.ml import Input, Output, command
        train_func = command(
            environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu:33",
            command='echo "hello world"',
            distribution={"type": "Pytorch", "process_count_per_instance": 2},
            inputs={
                "training_data": Input(type="uri_folder"),
                "max_epochs": 20,
                "learning_rate": 1.8,
                "learning_rate_schedule": "time-based",
            },
            outputs={"model_output": Output(type="uri_folder")},
        )
        # [END command_function]
        # [START command_component_definition]
        from azure.ai.ml.entities import CommandComponent
        component = CommandComponent(
            name="sample_command_component_basic",
            display_name="CommandComponentBasic",
            description="This is the basic command component",
            tags={"tag": "tagvalue", "owner": "sdkteam"},
            version="1",
            outputs={"component_out_path": {"type": "uri_folder"}},
            command="echo Hello World",
            code="./src",
            environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu:33",
        )
        # [END command_component_definition]
        # [START command_job_resource_configuration]
        from azure.ai.ml import MpiDistribution
        from azure.ai.ml.entities import JobResourceConfiguration
        trial = CommandJob(
            environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu:33",
            command="echo hello world",
            distribution=MpiDistribution(),
            environment_variables={"ENV1": "VAR1"},
            resources=JobResourceConfiguration(instance_count=2, instance_type="STANDARD_BLA"),
            code="./",
        )
        # [END command_job_resource_configuration]
        # [START command_set_resources]
        from azure.ai.ml import Input, Output, command
        command_node = command(
            environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu:33",
            command='echo "hello world"',
            distribution={"type": "Pytorch", "process_count_per_instance": 2},
            inputs={
                "training_data": Input(type="uri_folder"),
                "max_epochs": 20,
                "learning_rate": 1.8,
                "learning_rate_schedule": "time-based",
            },
            outputs={"model_output": Output(type="uri_folder")},
        )
        command_node.set_resources(
            instance_count=1,
            instance_type="STANDARD_D2_v2",
            properties={"key": "new_val"},
            shm_size="3g",
        )
        # [END command_set_resources]
        # [START command_set_limits]
        from azure.ai.ml import Input, Output, command
        command_node = command(
            environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu:33",
            command='echo "hello world"',
            distribution={"type": "Pytorch", "process_count_per_instance": 2},
            inputs={
                "training_data": Input(type="uri_folder"),
                "max_epochs": 20,
                "learning_rate": 1.8,
                "learning_rate_schedule": "time-based",
            },
            outputs={"model_output": Output(type="uri_folder")},
        )
        command_node.set_limits(timeout=10)
        # [END command_set_limits]
        # [START command_set_queue_settings]
        from azure.ai.ml import Input, Output, command
        command_node = command(
            environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu:33",
            command='echo "hello world"',
            distribution={"type": "Pytorch", "process_count_per_instance": 2},
            inputs={
                "training_data": Input(type="uri_folder"),
                "max_epochs": 20,
                "learning_rate": 1.8,
                "learning_rate_schedule": "time-based",
            },
            outputs={"model_output": Output(type="uri_folder")},
        )
        command_node.set_queue_settings(job_tier="standard", priority="medium")
        # [END command_set_queue_settings]
if __name__ == "__main__":
    sample = CommandConfigurationOptions()
    sample.ml_command_config()
 |