File: sample_agents_functions_async.py

package info (click to toggle)
python-azure 20251104%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 770,224 kB
  • sloc: python: 6,357,217; ansic: 804; javascript: 287; makefile: 198; sh: 193; xml: 109
file content (117 lines) | stat: -rw-r--r-- 4,151 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_agents_functions_async.py

DESCRIPTION:
    This sample demonstrates how to use agent operations with custom functions from
    the Azure Agents service using a asynchronous client.

USAGE:
    python sample_agents_functions_async.py

    Before running the sample:

    pip install azure-ai-projects azure-ai-agents azure-identity aiohttp

    Set these environment variables with your own values:
    1) PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the Overview
                          page of your Azure AI Foundry portal.
    2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in
       the "Models + endpoints" tab in your Azure AI Foundry project.
"""
import asyncio
import time
import os
from azure.ai.projects.aio import AIProjectClient
from azure.ai.agents.models import (
    AsyncFunctionTool,
    AsyncToolSet,
    RequiredFunctionToolCall,
    SubmitToolOutputsAction,
    ToolOutput,
    ListSortOrder,
    MessageTextContent,
)
from azure.identity.aio import DefaultAzureCredential
from utils.user_async_functions import user_async_functions


async def main() -> None:
    project_client = AIProjectClient(
        endpoint=os.environ["PROJECT_ENDPOINT"],
        credential=DefaultAzureCredential(),
    )

    async with project_client:
        agents_client = project_client.agents

        # Initialize agent functions
        functions = AsyncFunctionTool(functions=user_async_functions)
        toolset = AsyncToolSet()
        toolset.add(functions)

        # Create agent
        agent = await agents_client.create_agent(
            model=os.environ["MODEL_DEPLOYMENT_NAME"],
            name="my-agent",
            instructions="You are helpful agent",
            tools=functions.definitions,
        )
        print(f"Created agent, agent ID: {agent.id}")

        # Create thread for communication
        thread = await agents_client.threads.create()
        print(f"Created thread, ID: {thread.id}")

        # Create and send message
        message = await agents_client.messages.create(
            thread_id=thread.id, role="user", content="Hello, what's the time?"
        )
        print(f"Created message, ID: {message.id}")

        # Create and run agent task
        run = await agents_client.runs.create(thread_id=thread.id, agent_id=agent.id)
        print(f"Created run, ID: {run.id}")

        # Polling loop for run status
        while run.status in ["queued", "in_progress", "requires_action"]:
            time.sleep(4)
            run = await agents_client.runs.get(thread_id=thread.id, run_id=run.id)

            if run.status == "requires_action" and isinstance(run.required_action, SubmitToolOutputsAction):
                tool_calls = run.required_action.submit_tool_outputs.tool_calls
                if not tool_calls:
                    print("No tool calls provided - cancelling run")
                    await agents_client.runs.cancel(thread_id=thread.id, run_id=run.id)
                    break

                tool_outputs = await toolset.execute_tool_calls(tool_calls)

                print(f"Tool outputs: {tool_outputs}")
                if tool_outputs:
                    await agents_client.runs.submit_tool_outputs(
                        thread_id=thread.id, run_id=run.id, tool_outputs=tool_outputs
                    )

            print(f"Current run status: {run.status}")

        print(f"Run completed with status: {run.status}")

        # Delete the agent when done
        await agents_client.delete_agent(agent.id)
        print("Deleted agent")

        # Fetch and log messages
        messages = agents_client.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING)
        async for msg in messages:
            last_part = msg.content[-1]
            if isinstance(last_part, MessageTextContent):
                print(f"{msg.role}: {last_part.text.value}")


if __name__ == "__main__":
    asyncio.run(main())