File: sample_get_model_evaluation_results.py

package info (click to toggle)
python-azure 20251104%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 770,224 kB
  • sloc: python: 6,357,217; ansic: 804; javascript: 287; makefile: 198; sh: 193; xml: 109
file content (87 lines) | stat: -rw-r--r-- 2,891 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_get_model_evaluation_results.py
DESCRIPTION:
    This sample demonstrates how to retrieve detailed evaluation results (per utterance)
    for a trained model in a Conversation Authoring project.
USAGE:
    python sample_get_model_evaluation_results.py

REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
    AZURE_CONVERSATIONS_AUTHORING_ENDPOINT
    AZURE_CLIENT_ID
    AZURE_TENANT_ID
    AZURE_CLIENT_SECRET

NOTE:
    If you want to use AzureKeyCredential instead, set:
      - AZURE_CONVERSATIONS_AUTHORING_ENDPOINT
      - AZURE_CONVERSATIONS_AUTHORING_KEY

OPTIONAL ENV VARS:
    PROJECT_NAME       # defaults to "<project-name>"
    TRAINED_MODEL      # defaults to "<trained-model-label>"
"""

# [START conversation_authoring_get_model_evaluation_results]
import os
from azure.identity import DefaultAzureCredential
from azure.ai.language.conversations.authoring import ConversationAuthoringClient


def sample_get_model_evaluation_results():
    # settings
    endpoint = os.environ["AZURE_CONVERSATIONS_AUTHORING_ENDPOINT"]
    project_name = os.environ.get("PROJECT_NAME", "<project-name>")
    trained_model_label = os.environ.get("TRAINED_MODEL", "<trained-model-label>")

    # create a client with AAD
    credential = DefaultAzureCredential()
    client = ConversationAuthoringClient(endpoint, credential=credential)
    project_client = client.get_project_client(project_name)

    # fetch paged evaluation results
    results = project_client.trained_model.get_model_evaluation_results(
        trained_model_label=trained_model_label, string_index_type="Utf16CodeUnit"
    )

    print("=== Model Evaluation Results ===")
    seen = 0
    for r in results:
        seen += 1
        print(f"Text: {r.text}")
        print(f"Language: {r.language}")

        if r.intents_result:
            print(f"Expected Intent: {r.intents_result.expected_intent}")
            print(f"Predicted Intent: {r.intents_result.predicted_intent}")

        if r.entities_result:
            expected_entities = r.entities_result.expected_entities or []
            print("Expected Entities:")
            for ent in expected_entities:
                print(f" - Category: {ent.category}, Offset: {ent.offset}, Length: {ent.length}")

            predicted_entities = r.entities_result.predicted_entities or []
            print("Predicted Entities:")
            for ent in predicted_entities:
                print(f" - Category: {ent.category}, Offset: {ent.offset}, Length: {ent.length}")

        print()

    print(f"Total Results: {seen}")

# [END conversation_authoring_get_model_evaluation_results]


def main():
    sample_get_model_evaluation_results()


if __name__ == "__main__":
    main()