File: test_cancel_training_job.py

package info (click to toggle)
python-azure 20251104%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 770,224 kB
  • sloc: python: 6,357,217; ansic: 804; javascript: 287; makefile: 198; sh: 193; xml: 109
file content (51 lines) | stat: -rw-r--r-- 2,321 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# pylint: disable=line-too-long,useless-suppression
import functools

from devtools_testutils import AzureRecordedTestCase, EnvironmentVariableLoader, recorded_by_proxy
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations.authoring import ConversationAuthoringClient
from azure.ai.language.conversations.authoring.models import TrainingJobResult

ConversationsPreparer = functools.partial(
    EnvironmentVariableLoader,
    "authoring",
    authoring_endpoint="https://Sanitized.cognitiveservices.azure.com/",
    authoring_key="fake_key",
)


class TestConversations(AzureRecordedTestCase):
    def create_client(self, endpoint, key):
        return ConversationAuthoringClient(endpoint, AzureKeyCredential(key))


class TestConversationsCancelTrainingSync(TestConversations):
    @ConversationsPreparer()
    @recorded_by_proxy
    def test_cancel_training_job(self, authoring_endpoint, authoring_key):

        client = self.create_client(authoring_endpoint, authoring_key)

        project_client = client.get_project_client("Test-data-labels")
        job_id="e097b8e7-5cef-491a-aba6-24a82580973e_638919360000000000"

        poller = project_client.project.begin_cancel_training_job(
            job_id=job_id,
        )

        result = poller.result()  # TrainingJobResult

        assert result.training_status.status == "cancelled", f"Cancellation failed with status: {result.training_status.status}"
        print(f"Model Label: {result.model_label}")
        print(f"Training Config Version: {result.training_config_version}")
        print(f"Training Mode: {result.training_mode}")
        if result.data_generation_status is not None:
            print(f"Data Generation Status: {result.data_generation_status.status}")
            print(f"Data Generation %: {result.data_generation_status.percent_complete}")
        if result.training_status is not None:
            print(f"Training Status: {result.training_status.status}")
            print(f"Training %: {result.training_status.percent_complete}")
        if result.evaluation_status is not None:
            print(f"Evaluation Status: {result.evaluation_status.status}")
            print(f"Evaluation %: {result.evaluation_status.percent_complete}")
        print(f"Estimated End: {result.estimated_end_on}")