1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
# pylint: disable=line-too-long,useless-suppression
import functools
from devtools_testutils import AzureRecordedTestCase, EnvironmentVariableLoader, recorded_by_proxy
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations.authoring import ConversationAuthoringClient
from azure.ai.language.conversations.authoring.models import (
TrainingJobDetails,
TrainingMode,
EvaluationDetails,
EvaluationKind,
TrainingJobResult,
)
ConversationsPreparer = functools.partial(
EnvironmentVariableLoader,
"authoring",
authoring_endpoint="https://Sanitized.cognitiveservices.azure.com/",
authoring_key="fake_key",
)
class TestConversations(AzureRecordedTestCase):
def create_client(self, endpoint, key):
return ConversationAuthoringClient(endpoint, AzureKeyCredential(key))
class TestConversationsTrainSync(TestConversations):
@ConversationsPreparer()
@recorded_by_proxy
def test_train_project_sync(self, authoring_endpoint, authoring_key):
client = self.create_client(authoring_endpoint, authoring_key)
project_name = "Test-data-labels"
project_client = client.get_project_client(project_name)
# Arrange training request (object model; snake_case fields)
training_job_details = TrainingJobDetails(
model_label="MyModel",
training_mode=TrainingMode.STANDARD,
training_config_version="2023-04-15",
evaluation_options=EvaluationDetails(
kind=EvaluationKind.PERCENTAGE,
testing_split_percentage=20,
training_split_percentage=80,
),
)
# Act: begin train (LRO)
poller = project_client.project.begin_train(body=training_job_details)
# Wait for completion and get the TrainingJobResult
result: TrainingJobResult = poller.result()
# Prints for visibility
print(f"Model Label: {result.model_label}")
print(f"Training Config Version: {result.training_config_version}")
print(f"Training Mode: {result.training_mode}")
print(f"Training Status: {result.training_status}")
print(f"Data Generation Status: {result.data_generation_status}")
print(f"Evaluation Status: {result.evaluation_status}")
print(f"Estimated End: {result.estimated_end_on}")
|