1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
# pylint: disable=line-too-long,useless-suppression
import functools
import pytest
from devtools_testutils import AzureRecordedTestCase, EnvironmentVariableLoader, recorded_by_proxy
from azure.ai.language.conversations import ConversationAnalysisClient, AnalyzeConversationLROPoller
from azure.core.paging import ItemPaged
from azure.ai.language.conversations.models import (
# request models
AnalyzeConversationOperationInput,
MultiLanguageConversationInput,
TextConversation,
TextConversationItem,
PiiOperationAction,
ConversationPiiActionContent,
ConversationActions,
AnalyzeConversationOperationResult,
ConversationPiiOperationResult,
ConversationalPiiResult,
ConversationPiiItemResult,
NamedEntity,
InputWarning,
ConversationError,
AnalyzeConversationOperationAction,
NoMaskPolicyType,
)
from typing import cast, List
import re
from azure.core.credentials import AzureKeyCredential
ConversationsPreparer = functools.partial(
EnvironmentVariableLoader,
"conversations",
conversations_endpoint="https://Sanitized.cognitiveservices.azure.com/",
conversations_key="fake_key",
)
class TestConversations(AzureRecordedTestCase):
# Start with any helper functions you might need, for example a client creation method:
def create_client(self, endpoint, key):
credential = AzureKeyCredential(key)
client = ConversationAnalysisClient(endpoint, credential)
return client
...
class TestConversationsCase(TestConversations):
@ConversationsPreparer()
@recorded_by_proxy
def test_conversation_pii_with_no_mask_policy(self, conversations_endpoint, conversations_key):
client = self.create_client(conversations_endpoint, conversations_key)
detected_entities: List[str] = []
# ---- Redaction policy: NoMask (detect PII but do NOT redact) ----------
redaction_policy = NoMaskPolicyType()
# ---- Build input -----------------------------------------------------
ml_input = MultiLanguageConversationInput(
conversations=[
TextConversation(
id="1",
language="en",
conversation_items=[
TextConversationItem(id="1", participant_id="Agent_1", text="Can you provide your name?"),
TextConversationItem(id="2", participant_id="Customer_1", text="Hi, my name is John Doe."),
TextConversationItem(
id="3",
participant_id="Agent_1",
text="Thank you John, that has been updated in our system.",
),
],
)
]
)
# Action with NoMaskPolicyType
pii_action: AnalyzeConversationOperationAction = PiiOperationAction(
action_content=ConversationPiiActionContent(redaction_policy=redaction_policy),
name="Conversation PII with No Mask Policy",
)
actions: List[AnalyzeConversationOperationAction] = [pii_action]
operation_input = AnalyzeConversationOperationInput(
conversation_input=ml_input,
actions=actions,
)
# ---- Begin LRO -------------------------------------------------------
poller: AnalyzeConversationLROPoller[ItemPaged[ConversationActions]] = client.begin_analyze_conversation_job(
body=operation_input
)
print(f"Operation ID: {poller.details.get('operation_id')}")
# Wait for completion; result is ItemPaged[ConversationActions]
paged_actions: ItemPaged[ConversationActions] = poller.result()
# Final-state metadata
d = poller.details
print(f"Job ID: {d.get('job_id')}")
print(f"Status: {d.get('status')}")
if d.get("errors"):
print("Errors:")
for err in d["errors"]:
err = cast(ConversationError, err)
print(f" Code: {err.code} - {err.message}")
# ---- Iterate results and validate: PII present in returned text -------
for actions_page in paged_actions:
for action_result in actions_page.task_results or []:
ar = cast(AnalyzeConversationOperationResult, action_result)
if isinstance(ar, ConversationPiiOperationResult):
for conversation in ar.results.conversations or []:
conversation = cast(ConversationalPiiResult, conversation)
for item in conversation.conversation_items or []:
item = cast(ConversationPiiItemResult, item)
# With NoMask, service returns original text in redacted_content
returned_text = (getattr(item.redacted_content, "text", None) or "").strip()
if item.entities and returned_text:
for entity in item.entities:
entity = cast(NamedEntity, entity)
ent_text = entity.text or ""
detected_entities.append(ent_text)
# Ensure the original PII text is still present
assert (
ent_text in returned_text
), f"Expected entity '{ent_text}' to be present but was not found in: {returned_text}"
# ---- Assertions -------------------------------------------------------
assert len(detected_entities) > 0, "Expected at least one detected PII entity."
assert (d.get("status") or "").lower() in {"succeeded", "partiallysucceeded"}
|