File: test_import.py

package info (click to toggle)
python-azure 20251104%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 770,224 kB
  • sloc: python: 6,357,217; ansic: 804; javascript: 287; makefile: 198; sh: 193; xml: 109
file content (93 lines) | stat: -rw-r--r-- 3,543 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# pylint: disable=line-too-long,useless-suppression
import functools
from devtools_testutils import AzureRecordedTestCase, PowerShellPreparer, recorded_by_proxy
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics.authoring import TextAuthoringClient
from azure.core.exceptions import HttpResponseError
from azure.ai.textanalytics.authoring.models import (
    CreateProjectOptions,
    ExportedProject,
    ProjectSettings,
    ExportedCustomSingleLabelClassificationProjectAsset,
    ExportedCustomSingleLabelClassificationDocument,
    ExportedDocumentClass,
    ExportedClass,
    ProjectKind,
    StringIndexType,
)

ConversationsPreparer = functools.partial(
    PowerShellPreparer,
    "authoring",
    authoring_endpoint="https://Sanitized.cognitiveservices.azure.com/",
    authoring_key="fake_key",
)


class TestConversations(AzureRecordedTestCase):
    def create_client(self, endpoint: str, key: str) -> TextAuthoringClient:
        return TextAuthoringClient(endpoint, AzureKeyCredential(key))


class TestConversationsCase(TestConversations):
    @ConversationsPreparer()
    @recorded_by_proxy
    def test_import(self, authoring_endpoint, authoring_key):
        client = self.create_client(authoring_endpoint, authoring_key)

        project_name = "MyImportTextProject0902"
        project_client = client.get_project_client(project_name)
        # Arrange - metadata
        project_metadata = CreateProjectOptions(
            project_kind=ProjectKind.CUSTOM_SINGLE_LABEL_CLASSIFICATION,
            storage_input_container_name="single-class-example",
            project_name=project_name,
            language="en",
            description=(
                "This is a sample dataset provided by the Azure Language service team to help users get "
                "started with Custom named entity recognition. The provided sample dataset contains 20 loan "
                "agreements drawn up between two entities."
            ),
            multilingual=False,
            settings=ProjectSettings(),
        )

        # Arrange - assets
        project_assets = ExportedCustomSingleLabelClassificationProjectAsset(
            classes=[
                ExportedClass(category="Date"),
                ExportedClass(category="LenderName"),
                ExportedClass(category="LenderAddress"),
            ],
            documents=[
                ExportedCustomSingleLabelClassificationDocument(
                    document_class=ExportedDocumentClass(category="Date"),
                    location="01.txt",
                    language="en",
                ),
                ExportedCustomSingleLabelClassificationDocument(
                    document_class=ExportedDocumentClass(category="LenderName"),
                    location="02.txt",
                    language="en",
                ),
            ],
        )

        exported_project = ExportedProject(
            project_file_version="2022-05-01",
            string_index_type=StringIndexType.UTF16_CODE_UNIT,
            metadata=project_metadata,
            assets=project_assets,
        )

        # Act - long-running import
        poller = project_client.project.begin_import(body=exported_project)

        try:
            poller.result()
        except HttpResponseError as e:
            msg = getattr(getattr(e, "error", None), "message", str(e))
            print(f"Operation failed: {msg}")
            raise

        print(f"Import completed. done={poller.done()} status={poller.status()}")