1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
# pylint: disable=line-too-long,useless-suppression
import functools
from devtools_testutils import AzureRecordedTestCase, PowerShellPreparer, recorded_by_proxy
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics.authoring import TextAuthoringClient
from azure.core.exceptions import HttpResponseError
from azure.ai.textanalytics.authoring.models import (
CreateProjectOptions,
ExportedProject,
ProjectSettings,
ExportedCustomSingleLabelClassificationProjectAsset,
ExportedCustomSingleLabelClassificationDocument,
ExportedDocumentClass,
ExportedClass,
ProjectKind,
StringIndexType,
)
ConversationsPreparer = functools.partial(
PowerShellPreparer,
"authoring",
authoring_endpoint="https://Sanitized.cognitiveservices.azure.com/",
authoring_key="fake_key",
)
class TestConversations(AzureRecordedTestCase):
def create_client(self, endpoint: str, key: str) -> TextAuthoringClient:
return TextAuthoringClient(endpoint, AzureKeyCredential(key))
class TestConversationsCase(TestConversations):
@ConversationsPreparer()
@recorded_by_proxy
def test_import(self, authoring_endpoint, authoring_key):
client = self.create_client(authoring_endpoint, authoring_key)
project_name = "MyImportTextProject0902"
project_client = client.get_project_client(project_name)
# Arrange - metadata
project_metadata = CreateProjectOptions(
project_kind=ProjectKind.CUSTOM_SINGLE_LABEL_CLASSIFICATION,
storage_input_container_name="single-class-example",
project_name=project_name,
language="en",
description=(
"This is a sample dataset provided by the Azure Language service team to help users get "
"started with Custom named entity recognition. The provided sample dataset contains 20 loan "
"agreements drawn up between two entities."
),
multilingual=False,
settings=ProjectSettings(),
)
# Arrange - assets
project_assets = ExportedCustomSingleLabelClassificationProjectAsset(
classes=[
ExportedClass(category="Date"),
ExportedClass(category="LenderName"),
ExportedClass(category="LenderAddress"),
],
documents=[
ExportedCustomSingleLabelClassificationDocument(
document_class=ExportedDocumentClass(category="Date"),
location="01.txt",
language="en",
),
ExportedCustomSingleLabelClassificationDocument(
document_class=ExportedDocumentClass(category="LenderName"),
location="02.txt",
language="en",
),
],
)
exported_project = ExportedProject(
project_file_version="2022-05-01",
string_index_type=StringIndexType.UTF16_CODE_UNIT,
metadata=project_metadata,
assets=project_assets,
)
# Act - long-running import
poller = project_client.project.begin_import(body=exported_project)
try:
poller.result()
except HttpResponseError as e:
msg = getattr(getattr(e, "error", None), "message", str(e))
print(f"Operation failed: {msg}")
raise
print(f"Import completed. done={poller.done()} status={poller.status()}")
|