1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
# ---------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------
import os
import pathlib
from typing import Callable
import pandas as pd
import pytest
from devtools_testutils import is_live
from openai.types.graders import StringCheckGrader
from azure.core.credentials import TokenCredential
from azure.ai.evaluation import (
F1ScoreEvaluator,
evaluate,
AzureOpenAIGrader,
AzureOpenAILabelGrader,
AzureOpenAIStringCheckGrader,
AzureOpenAITextSimilarityGrader,
AzureOpenAIScoreModelGrader,
AzureOpenAIPythonGrader,
)
@pytest.fixture
def data_file() -> pathlib.Path:
return pathlib.Path(__file__).parent.resolve() / "data" / "evaluate_test_data.jsonl"
@pytest.mark.usefixtures("recording_injection", "recorded_test")
class TestAoaiEvaluation:
@pytest.mark.skipif(not is_live(), reason="AOAI recordings have bad recording scrubbing")
def test_evaluate_all_aoai_graders(self, model_config, data_file):
# create a normal evaluator for comparison
f1_eval = F1ScoreEvaluator()
## ---- Initialize specific graders ----
# Corresponds to https://github.com/openai/openai-python/blob/ed53107e10e6c86754866b48f8bd862659134ca8/src/openai/types/eval_text_similarity_grader.py#L11
sim_grader = AzureOpenAITextSimilarityGrader(
model_config=model_config,
evaluation_metric="fuzzy_match",
input="{{item.query}}",
name="similarity",
pass_threshold=1,
reference="{{item.query}}",
)
# Corresponds to https://github.com/openai/openai-python/blob/ed53107e10e6c86754866b48f8bd862659134ca8/src/openai/types/eval_string_check_grader_param.py#L10
string_grader = AzureOpenAIStringCheckGrader(
model_config=model_config,
input="{{item.query}}",
name="starts with what is",
operation="like",
reference="What is",
)
# Corresponds to https://github.com/openai/openai-python/blob/ed53107e10e6c86754866b48f8bd862659134ca8/src/openai/types/eval_create_params.py#L132
label_grader = AzureOpenAILabelGrader(
model_config=model_config,
input=[{"content": "{{item.query}}", "role": "user"}],
labels=["too short", "just right", "too long"],
passing_labels=["just right"],
model="gpt-4o",
name="label",
)
# ---- General Grader Initialization ----
# Define an string check grader config directly using the OAI SDK
oai_string_check_grader = StringCheckGrader(
input="{{item.query}}", name="contains hello", operation="like", reference="hello", type="string_check"
)
# Plug that into the general grader
general_grader = AzureOpenAIGrader(model_config=model_config, grader_config=oai_string_check_grader)
evaluators = {
"f1_score": f1_eval,
"similarity": sim_grader,
"string_check": string_grader,
"label_model": label_grader,
"general_grader": general_grader,
}
# run the evaluation
result = evaluate(data=data_file, evaluators=evaluators, _use_run_submitter_client=True)
row_result_df = pd.DataFrame(result["rows"])
metrics = result["metrics"]
assert len(row_result_df.keys()) == 23
assert len(row_result_df["outputs.f1_score.f1_score"]) == 3
assert len(row_result_df["outputs.similarity.similarity_result"]) == 3
assert len(row_result_df["outputs.similarity.passed"]) == 3
assert len(row_result_df["outputs.similarity.score"]) == 3
assert len(row_result_df["outputs.similarity.sample"]) == 3
assert len(row_result_df["outputs.string_check.string_check_result"]) == 3
assert len(row_result_df["outputs.string_check.passed"]) == 3
assert len(row_result_df["outputs.string_check.score"]) == 3
assert len(row_result_df["outputs.string_check.sample"]) == 3
assert len(row_result_df["outputs.label_model.label_model_result"]) == 3
assert len(row_result_df["outputs.label_model.passed"]) == 3
assert len(row_result_df["outputs.label_model.score"]) == 3
assert len(row_result_df["outputs.label_model.sample"]) == 3
assert len(row_result_df["outputs.general_grader.general_grader_result"]) == 3
assert len(row_result_df["outputs.general_grader.passed"]) == 3
assert len(row_result_df["outputs.general_grader.score"]) == 3
assert len(row_result_df["outputs.general_grader.sample"]) == 3
assert len(metrics.keys()) == 11
assert metrics["f1_score.f1_score"] >= 0
assert metrics["f1_score.f1_score"] >= 0
assert metrics["f1_score.f1_threshold"] >= 0
assert metrics["f1_score.binary_aggregate"] >= 0
assert metrics["f1_score.prompt_tokens"] == 0
assert metrics["f1_score.completion_tokens"] == 0
assert metrics["f1_score.total_tokens"] == 0
assert metrics["f1_score.duration"] >= 0
assert metrics["similarity.pass_rate"] == 1.0
assert metrics["string_check.pass_rate"] == 0.3333333333333333
assert metrics["label_model.pass_rate"] >= 0
assert metrics["general_grader.pass_rate"] == 0.0
@pytest.mark.skipif(not is_live(), reason="AOAI recordings have bad recording scrubbing")
def test_evaluate_with_column_mapping_and_target(self, model_config, data_file):
sim_grader = AzureOpenAITextSimilarityGrader(
model_config=model_config,
evaluation_metric="fuzzy_match",
input="{{item.target_output}}",
name="similarity",
pass_threshold=1,
reference="{{item.query}}",
)
string_grader = AzureOpenAIStringCheckGrader(
model_config=model_config,
input="{{item.query}}",
name="starts with what is",
operation="like",
reference="What is",
)
def target(query: str):
return {"target_output": query}
evaluators = {
"similarity": sim_grader,
"string_check": string_grader,
}
evaluation_config = {
"similarity": {
"column_mapping": {
"query": "${data.query}", # test basic mapping
"target_output": "${target.target_output}",
},
},
"string_check": { # test mapping across value names
"column_mapping": {"query": "${target.target_output}"},
},
}
# run the evaluation
result = evaluate(
data=data_file,
evaluators=evaluators,
_use_run_submitter_client=True,
target=target,
evaluation_config=evaluation_config,
)
row_result_df = pd.DataFrame(result["rows"])
metrics = result["metrics"]
assert len(row_result_df.keys()) == 13
assert len(row_result_df["outputs.similarity.similarity_result"]) == 3
assert len(row_result_df["outputs.similarity.passed"]) == 3
assert len(row_result_df["outputs.similarity.score"]) == 3
assert len(row_result_df["outputs.similarity.sample"]) == 3
assert len(row_result_df["outputs.string_check.string_check_result"]) == 3
assert len(row_result_df["outputs.string_check.passed"]) == 3
assert len(row_result_df["outputs.string_check.score"]) == 3
assert len(row_result_df["outputs.string_check.sample"]) == 3
assert len(metrics.keys()) == 2
assert metrics["similarity.pass_rate"] == 1.0
assert metrics["string_check.pass_rate"] == 0.3333333333333333
@pytest.mark.skipif(not is_live(), reason="AOAI recordings have bad recording scrubbing")
def test_evaluate_with_large_dataset_pagination(self, model_config):
"""Test AOAI graders with a large dataset that requires pagination"""
# Create a large dataset that will trigger pagination (>100 rows)
large_data = []
for i in range(150): # Create 150 rows to ensure pagination
large_data.append({"query": f"What is {i}?", "ground_truth": f"This is item {i}", "answer": f"Item {i}"})
# Create a temporary file with the large dataset
import tempfile
import json
with tempfile.NamedTemporaryFile(mode="w", suffix=".jsonl", delete=False) as f:
for item in large_data:
f.write(json.dumps(item) + "\n")
temp_file = f.name
try:
# Use a simple string check grader
string_grader = AzureOpenAIStringCheckGrader(
model_config=model_config,
input="{{item.query}}",
name="contains_what",
operation="like",
reference="What",
)
evaluators = {
"string_check": string_grader,
}
# Run evaluation with large dataset
result = evaluate(data=temp_file, evaluators=evaluators, _use_run_submitter_client=True)
row_result_df = pd.DataFrame(result["rows"])
metrics = result["metrics"]
# Verify all 150 rows were processed
assert len(row_result_df) == 150
assert len(row_result_df["outputs.string_check.passed"]) == 150
assert len(row_result_df["outputs.string_check.score"]) == 150
# Verify metrics
assert "string_check.pass_rate" in metrics
assert metrics["string_check.pass_rate"] == 1.0 # All should pass
finally:
# Clean up temp file
os.unlink(temp_file)
@pytest.mark.skipif(not is_live(), reason="AOAI recordings have bad recording scrubbing")
def test_evaluate_multiple_graders_with_pagination(self, model_config):
"""Test multiple AOAI graders with pagination to ensure proper result mapping"""
# Create dataset with 120 rows
large_data = []
for i in range(120):
large_data.append({"query": f"Hello world {i}", "answer": f"Response {i}"})
import tempfile
import json
with tempfile.NamedTemporaryFile(mode="w", suffix=".jsonl", delete=False) as f:
for item in large_data:
f.write(json.dumps(item) + "\n")
temp_file = f.name
try:
# Create multiple graders
string_grader1 = AzureOpenAIStringCheckGrader(
model_config=model_config,
input="{{item.query}}",
name="contains_hello",
operation="like",
reference="Hello",
)
string_grader2 = AzureOpenAIStringCheckGrader(
model_config=model_config,
input="{{item.query}}",
name="contains_world",
operation="like",
reference="world",
)
evaluators = {
"hello_check": string_grader1,
"world_check": string_grader2,
}
# Run evaluation
result = evaluate(data=temp_file, evaluators=evaluators, _use_run_submitter_client=True)
row_result_df = pd.DataFrame(result["rows"])
# Verify all rows processed for both graders
assert len(row_result_df) == 120
assert len(row_result_df["outputs.hello_check.passed"]) == 120
assert len(row_result_df["outputs.world_check.passed"]) == 120
# Verify both graders have 100% pass rate
metrics = result["metrics"]
assert metrics["hello_check.pass_rate"] == 1.0
assert metrics["world_check.pass_rate"] == 1.0
finally:
os.unlink(temp_file)
@pytest.mark.skipif(not is_live(), reason="AOAI recordings have bad recording scrubbing")
@pytest.mark.parametrize(
"grader_factory",
[
lambda model_config, credential: AzureOpenAILabelGrader(
model_config=model_config,
input=[{"content": "{{item.query}}", "role": "user"}],
labels=["too short", "just right", "too long"],
passing_labels=["just right"],
model="gpt-4.1",
name="label",
credential=credential,
),
lambda model_config, credential: AzureOpenAIStringCheckGrader(
model_config=model_config,
input="{{item.query}}",
name="starts with what is",
operation="like",
reference="What is",
credential=credential,
),
lambda model_config, credential: AzureOpenAITextSimilarityGrader(
model_config=model_config,
evaluation_metric="fuzzy_match",
input="{{item.query}}",
name="similarity",
pass_threshold=1,
reference="{{item.query}}",
credential=credential,
),
lambda model_config, credential: AzureOpenAIScoreModelGrader(
model_config=model_config,
name="Conversation Quality Assessment",
model="gpt-4.1",
input=[
{
"role": "system",
"content": (
"You are an expert conversation quality evaluator. "
"Assess the quality of AI assistant responses based on "
"helpfulness, completeness, accuracy, and "
"appropriateness. Return a score between 0.0 (very "
"poor) and 1.0 (excellent)."
),
},
{
"role": "user",
"content": (
"Evaluate this conversation:\n"
"Message: {{ item.query }}\n\n"
"Provide a quality score from 0.0 to 1.0."
),
},
],
range=[0.0, 1.0],
sampling_params={"temperature": 0.0},
credential=credential,
),
lambda model_config, credential: AzureOpenAIPythonGrader(
model_config=model_config,
name="custom_accuracy",
image_tag="2025-05-08",
pass_threshold=0.8, # 80% threshold for passing
source="""def grade(sample: dict, item: dict) -> float:
\"\"\"
Custom grading logic that compares model output to expected label.
Args:
sample: Dictionary that is typically empty in Azure AI Evaluation
item: Dictionary containing ALL the data including model output and ground truth
Returns:
Float score between 0.0 and 1.0
\"\"\"
# Important: In Azure AI Evaluation, all data is in 'item', not 'sample'
# The 'sample' parameter is typically an empty dictionary
# Get the model's response/output from item
output = item.get("response", "") or item.get("output", "") or item.get("output_text", "")
output = output.lower()
# Get the expected label/ground truth from item
label = item.get("ground_truth", "") or item.get("label", "") or item.get("expected", "")
label = label.lower()
# Handle empty cases
if not output or not label:
return 0.0
# Exact match gets full score
if output == label:
return 1.0
# Partial match logic (customize as needed)
if output in label or label in output:
return 0.5
return 0.0
""",
credential=credential,
),
],
)
def test_evaluate_aoai_grader_with_credential(
self,
data_file: pathlib.Path,
model_config: dict,
grader_factory: Callable[[dict, TokenCredential], AzureOpenAIGrader],
azure_cred: TokenCredential,
) -> None:
"""Validate that prompty based evaluators support passing custom credentials"""
config = {**model_config}
# ensure that we aren't using an api_key for auth
config.pop("api_key", None)
grader = grader_factory(config, azure_cred)
result = evaluate(data=data_file, evaluators={"grader": grader})
|