File: test_aoai_nested_integration.py

package info (click to toggle)
python-azure 20251104%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 770,224 kB
  • sloc: python: 6,357,217; ansic: 804; javascript: 287; makefile: 198; sh: 193; xml: 109
file content (289 lines) | stat: -rw-r--r-- 10,601 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

import pytest
import pandas as pd
from unittest.mock import Mock, patch, MagicMock
from typing import Dict, Any

from azure.ai.evaluation._evaluate._evaluate_aoai import (
    _generate_data_source_config,
    _get_data_source,
    _begin_eval_run,
    WRAPPER_KEY,
)


@pytest.mark.unittest
class TestAOAINestedDataIntegration:
    """Test suite for AOAI evaluation integration with nested data structures."""

    def test_aoai_eval_run_with_flat_data(self):
        """Test _begin_eval_run with flat data structure."""
        # Setup test data
        input_df = pd.DataFrame(
            [
                {"query": "What is AI?", "response": "AI is...", "ground_truth": "AI"},
                {"query": "What is ML?", "response": "ML is...", "ground_truth": "ML"},
            ]
        )

        column_mapping = {
            "query": "${data.query}",
            "response": "${data.response}",
            "ground_truth": "${data.ground_truth}",
        }

        # Mock the client
        mock_client = Mock()
        mock_run = Mock()
        mock_run.id = "test-run-123"
        mock_client.evals.runs.create.return_value = mock_run

        # Call the function
        run_id = _begin_eval_run(
            client=mock_client,
            eval_group_id="test-group-456",
            run_name="test-run",
            input_data_df=input_df,
            column_mapping=column_mapping,
        )

        # Verify the client was called
        assert run_id == "test-run-123"
        mock_client.evals.runs.create.assert_called_once()

        # Get the call arguments
        call_kwargs = mock_client.evals.runs.create.call_args[1]

        # Verify eval_id
        assert call_kwargs["eval_id"] == "test-group-456"
        assert call_kwargs["name"] == "test-run"

        # Verify data_source structure
        data_source = call_kwargs["data_source"]
        assert data_source["type"] == "jsonl"
        assert "source" in data_source
        assert data_source["source"]["type"] == "file_content"

        # Verify content
        content = data_source["source"]["content"]
        assert len(content) == 2

        # Each item should be wrapped
        for item in content:
            assert WRAPPER_KEY in item
            assert "query" in item[WRAPPER_KEY]
            assert "response" in item[WRAPPER_KEY]
            assert "ground_truth" in item[WRAPPER_KEY]

    def test_aoai_eval_run_with_nested_data(self):
        """Test _begin_eval_run with nested data structure."""
        # Setup nested test data
        input_df = pd.DataFrame(
            [
                {
                    "item.query": "Security question",
                    "item.context.company.policy.security.passwords.rotation_days": "90",
                    "item.context.company.policy.security.network.vpn.required": "true",
                    "item.response": "Password rotation is 90 days.",
                    "item.ground_truth": "90",
                }
            ]
        )

        column_mapping = {
            "query": "${data.item.query}",
            "rotation_days": "${data.item.context.company.policy.security.passwords.rotation_days}",
            "vpn_required": "${data.item.context.company.policy.security.network.vpn.required}",
            "response": "${data.item.response}",
            "ground_truth": "${data.item.ground_truth}",
        }

        # Mock the client
        mock_client = Mock()
        mock_run = Mock()
        mock_run.id = "nested-run-789"
        mock_client.evals.runs.create.return_value = mock_run

        # Call the function
        run_id = _begin_eval_run(
            client=mock_client,
            eval_group_id="nested-group-101",
            run_name="nested-test-run",
            input_data_df=input_df,
            column_mapping=column_mapping,
        )

        # Verify
        assert run_id == "nested-run-789"
        mock_client.evals.runs.create.assert_called_once()

        # Get the data source
        call_kwargs = mock_client.evals.runs.create.call_args[1]
        data_source = call_kwargs["data_source"]
        content = data_source["source"]["content"]

        # Verify nested structure was built
        assert len(content) == 1
        item_root = content[0][WRAPPER_KEY]

        # Check nested paths exist
        assert "query" in item_root
        assert "context" in item_root
        assert "company" in item_root["context"]
        assert "policy" in item_root["context"]["company"]
        assert "security" in item_root["context"]["company"]["policy"]
        assert "passwords" in item_root["context"]["company"]["policy"]["security"]
        assert "rotation_days" in item_root["context"]["company"]["policy"]["security"]["passwords"]
        assert item_root["context"]["company"]["policy"]["security"]["passwords"]["rotation_days"] == "90"

    def test_data_source_config_matches_data_source_for_nested(self):
        """Test that schema config and data source align for nested structures."""
        input_df = pd.DataFrame(
            [
                {
                    "item.query": "Test query",
                    "item.context.field1": "value1",
                    "item.context.field2": "value2",
                    "item.response": "Test response",
                }
            ]
        )

        column_mapping = {
            "query": "${data.item.query}",
            "field1": "${data.item.context.field1}",
            "field2": "${data.item.context.field2}",
            "response": "${data.item.response}",
        }

        # Generate both config and data source
        config = _generate_data_source_config(input_df, column_mapping)
        data_source = _get_data_source(input_df, column_mapping)

        # Verify config structure
        assert config["type"] == "custom"
        schema = config["item_schema"]
        assert schema["type"] == "object"

        # Verify schema has nested structure (wrapper stripped)
        assert "query" in schema["properties"]
        assert "context" in schema["properties"]
        assert schema["properties"]["context"]["type"] == "object"

        # Verify data source structure matches
        content = data_source["source"]["content"]
        item_root = content[0][WRAPPER_KEY]

        # All schema properties should exist in data
        assert "query" in item_root
        assert "context" in item_root
        assert "field1" in item_root["context"]
        assert "field2" in item_root["context"]
        assert "response" in item_root

    def test_data_source_config_matches_data_source_for_flat(self):
        """Test that schema config and data source align for flat structures."""
        input_df = pd.DataFrame([{"query": "Test", "response": "Answer", "score": "5"}])

        column_mapping = {"query": "${data.query}", "response": "${data.response}", "score": "${data.score}"}

        # Generate both config and data source
        config = _generate_data_source_config(input_df, column_mapping)
        data_source = _get_data_source(input_df, column_mapping)

        # Verify flat config structure
        assert config["type"] == "custom"
        schema = config["item_schema"]
        assert schema["type"] == "object"

        # Flat mode: properties match mapping keys
        assert set(schema["properties"].keys()) == {"query", "response", "score"}

        # Verify data source
        content = data_source["source"]["content"]
        item_root = content[0][WRAPPER_KEY]

        # All properties should exist
        assert "query" in item_root
        assert "response" in item_root
        assert "score" in item_root

    def test_data_source_with_run_outputs_and_nested_data(self):
        """Test data source generation with both run outputs and nested data."""
        input_df = pd.DataFrame(
            [
                {
                    "item.query": "Test query",
                    "item.context.metadata.id": "123",
                    "__outputs.generated_response": "Generated text",
                }
            ]
        )

        column_mapping = {
            "query": "${data.item.query}",
            "metadata_id": "${data.item.context.metadata.id}",
            "response": "${run.outputs.generated_response}",
        }

        # Generate data source
        data_source = _get_data_source(input_df, column_mapping)

        # Verify structure
        content = data_source["source"]["content"]
        item_root = content[0][WRAPPER_KEY]

        # Nested data paths
        assert "query" in item_root
        assert "context" in item_root
        assert "metadata" in item_root["context"]
        assert item_root["context"]["metadata"]["id"] == "123"

        # Run outputs (just leaf name)
        assert "generated_response" in item_root
        assert item_root["generated_response"] == "Generated text"

    def test_complex_nested_structure_multiple_branches(self):
        """Test nested structure with multiple branches at same level."""
        input_df = pd.DataFrame(
            [
                {
                    "item.user.name": "Alice",
                    "item.user.email": "alice@example.com",
                    "item.system.version": "1.0",
                    "item.system.region": "us-east",
                    "item.query": "Test",
                }
            ]
        )

        column_mapping = {
            "name": "${data.item.user.name}",
            "email": "${data.item.user.email}",
            "version": "${data.item.system.version}",
            "region": "${data.item.system.region}",
            "query": "${data.item.query}",
        }

        # Generate config and data
        config = _generate_data_source_config(input_df, column_mapping)
        data_source = _get_data_source(input_df, column_mapping)

        # Verify schema has both branches
        schema = config["item_schema"]
        assert "user" in schema["properties"]
        assert "system" in schema["properties"]
        assert "query" in schema["properties"]

        # Verify data has both branches
        item_root = data_source["source"]["content"][0][WRAPPER_KEY]
        assert "user" in item_root
        assert "system" in item_root
        assert item_root["user"]["name"] == "Alice"
        assert item_root["user"]["email"] == "alice@example.com"
        assert item_root["system"]["version"] == "1.0"
        assert item_root["system"]["region"] == "us-east"