1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
from unittest.mock import MagicMock, patch
import pytest
from azure.ai.evaluation._exceptions import EvaluationException
from azure.ai.evaluation import (
FluencyEvaluator,
SimilarityEvaluator,
RetrievalEvaluator,
RelevanceEvaluator,
GroundednessEvaluator,
)
async def quality_response_async_mock(*args, **kwargs):
llm_output = (
"<S0>Let's think step by step: The response 'Honolulu' is a single word. "
"It does not form a complete sentence, lacks grammatical structure, and does not "
"convey any clear idea or message. It is not possible to assess vocabulary range, "
"sentence complexity, coherence, or overall readability from a single word. Therefore,"
"it falls into the category of minimal command of the language.</S0>"
"<S1>The response is a single word and does not provide any meaningful content to evaluate"
" fluency. It is largely incomprehensible and does not meet the criteria for higher fluency "
"levels.</S1><S2>1</S2>"
)
return {"llm_output": llm_output}
async def quality_no_response_async_mock():
return {"llm_output": "1"}
@pytest.mark.usefixtures("mock_model_config")
@pytest.mark.unittest
class TestBuiltInEvaluators:
def test_fluency_evaluator(self, mock_model_config):
fluency_eval = FluencyEvaluator(model_config=mock_model_config)
fluency_eval._flow = MagicMock(return_value=quality_response_async_mock())
score = fluency_eval(response="The capital of Japan is Tokyo.")
assert score is not None
assert score["fluency"] == score["gpt_fluency"] == 1
def test_fluency_evaluator_non_string_inputs(self, mock_model_config):
fluency_eval = FluencyEvaluator(model_config=mock_model_config)
fluency_eval._flow = MagicMock(return_value=quality_response_async_mock())
score = fluency_eval(response={"bar": "2"})
assert score is not None
assert score["fluency"] == score["gpt_fluency"] == 1
def test_fluency_evaluator_empty_string(self, mock_model_config):
fluency_eval = FluencyEvaluator(model_config=mock_model_config)
fluency_eval._flow = MagicMock(return_value=quality_response_async_mock())
with pytest.raises(EvaluationException) as exc_info:
fluency_eval(response=None)
assert (
"FluencyEvaluator: Either 'conversation' or individual inputs must be provided." in exc_info.value.args[0]
)
def test_similarity_evaluator_keys(self, mock_model_config):
similarity_eval = SimilarityEvaluator(model_config=mock_model_config)
similarity_eval._flow = MagicMock(return_value=quality_no_response_async_mock())
result = similarity_eval(
query="What is the capital of Japan?",
response="The capital of Japan is Tokyo.",
ground_truth="Tokyo is Japan's capital, known for its blend of traditional culture and technological advancements.",
)
assert result["similarity"] == result["gpt_similarity"] == 1
# Updated assertion to expect 4 keys instead of 2
assert len(result) == 11
# Verify all expected keys are present
assert set(result.keys()) == {
"similarity",
"gpt_similarity",
"similarity_result",
"similarity_threshold",
"similarity_prompt_tokens",
"similarity_completion_tokens",
"similarity_total_tokens",
"similarity_finish_reason",
"similarity_model",
"similarity_sample_input",
"similarity_sample_output",
}
def test_retrieval_evaluator_keys(self, mock_model_config):
retrieval_eval = RetrievalEvaluator(model_config=mock_model_config)
retrieval_eval._flow = MagicMock(return_value=quality_response_async_mock())
result = retrieval_eval(
query="What is the value of 2 + 2?",
context="1 + 2 = 2",
)
assert result["retrieval"] == result["gpt_retrieval"] == 1
assert result["retrieval"] == result["gpt_retrieval"]
assert result["retrieval_reason"]
retrieval_eval = RetrievalEvaluator(model_config=mock_model_config)
retrieval_eval._flow = MagicMock(return_value=quality_response_async_mock())
conversation = {
"messages": [
{"role": "user", "content": "What is the value of 2 + 2?"},
{
"role": "assistant",
"content": "2 + 2 = 4",
"context": {
"citations": [
{"id": "math_doc.md", "content": "Information about additions: 1 + 2 = 3, 2 + 2 = 4"}
]
},
},
]
}
result = retrieval_eval(conversation=conversation)
assert result["retrieval"] == result["gpt_retrieval"] == 1
retrieval_eval = RetrievalEvaluator(model_config=mock_model_config)
retrieval_eval._flow = MagicMock(return_value=quality_response_async_mock())
conversation = {
"messages": [
{"role": "user", "content": "What is the value of 2 + 2?"},
{
"role": "assistant",
"content": "2 + 2 = 4",
"context": "Information about additions: 1 + 2 = 3, 2 + 2 = 4",
},
]
}
result = retrieval_eval(conversation=conversation)
assert result["retrieval"] == result["gpt_retrieval"] == 1
def test_quality_evaluator_missing_input(self, mock_model_config):
"""All evaluators that inherit from EvaluatorBase are covered by this test"""
quality_eval = RetrievalEvaluator(model_config=mock_model_config)
quality_eval._flow = MagicMock(return_value=quality_response_async_mock())
with pytest.raises(EvaluationException) as exc_info:
quality_eval(response="The capital of Japan is Tokyo.") # Retrieval requires query and context
assert (
"RetrievalEvaluator: Either 'conversation' or individual inputs must be provided." in exc_info.value.args[0]
)
@patch("azure.ai.evaluation._evaluators._groundedness._groundedness.AsyncPrompty.load")
def test_groundedness_evaluator_with_agent_response(self, mock_async_prompty, mock_model_config):
"""Test GroundednessEvaluator with query, response, and tool_definitions"""
groundedness_eval = GroundednessEvaluator(model_config=mock_model_config)
mock_async_prompty.return_value = quality_response_async_mock
# Test with query, response, and tool_definitions
result = groundedness_eval(
query="What is the capital of Japan?",
response=[
{
"createdAt": "2025-08-01T00:02:38Z",
"run_id": "run_CmSdDdrq0CzwGOwqmWVADYwi",
"tool_call_id": "call_AU6kCcVwxv1cjM8HIQHMFFGh",
"role": "tool",
"content": [
{
"type": "tool_result",
"tool_result": [
{
"file_id": "assistant-6QeBNfMsJpL3AHnE3T6dwY",
"file_name": "product_info_1.md",
"score": 0.03333333507180214,
"attributes": {},
"content": [
{
"type": "text",
"text": "# Information about product item_number: 1\n\n## Brand\nContoso Galaxy Innovations\n\n## Category\nSmart Eyewear\n",
}
],
}
],
}
],
},
{
"createdAt": "2025-08-01T00:02:38Z",
"run_id": "run_CmSdDdrq0CzwGOwqmWVADYwi",
"role": "assistant",
"content": [
{"type": "text", "text": "One of the Contoso products identified is the **SmartView Glasses**"}
],
},
{
"createdAt": "2025-08-01T00:02:38Z",
"run_id": "run_CmSdDdrq0CzwGOwqmWVADYwi",
"role": "assistant",
"content": [
{
"type": "tool_call",
"tool_call_id": "call_AU6kCcVwxv1cjM8HIQHMFFGh",
"name": "file_search",
"arguments": {"ranking_options": {"ranker": "default_2024_08_21", "score_threshold": 0.0}},
}
],
},
],
tool_definitions=[
{"name": "file_search", "type": "file_search", "description": "Search for information in files"}
],
)
assert result is not None
assert result["groundedness"] == result["gpt_groundedness"] == 1
assert "groundedness_reason" in result
def test_groundedness_evaluator_with_context(self, mock_model_config):
"""Test GroundednessEvaluator with direct context (traditional use)"""
groundedness_eval = GroundednessEvaluator(model_config=mock_model_config)
groundedness_eval._flow = MagicMock(return_value=quality_response_async_mock())
result = groundedness_eval(
response="The capital of Japan is Tokyo.",
context="Tokyo is the capital of Japan and is located on the eastern coast of Honshu island.",
)
assert result is not None
assert result["groundedness"] == result["gpt_groundedness"] == 1
assert "groundedness_reason" in result
def test_groundedness_evaluator_missing_required_inputs(self, mock_model_config):
"""Test GroundednessEvaluator with missing required inputs for agent response mode"""
groundedness_eval = GroundednessEvaluator(model_config=mock_model_config)
groundedness_eval._flow = MagicMock(return_value=quality_response_async_mock())
with pytest.raises(EvaluationException) as exc_info:
groundedness_eval(
query="What is the capital of Japan?",
# Missing response
)
assert (
"Either 'conversation' or individual inputs must be provided. For Agent groundedness 'query' and 'response' are required."
in exc_info.value.args[0]
)
|