File: test_tool_input_accuracy_evaluator.py

package info (click to toggle)
python-azure 20251104%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 770,224 kB
  • sloc: python: 6,357,217; ansic: 804; javascript: 287; makefile: 198; sh: 193; xml: 109
file content (654 lines) | stat: -rw-r--r-- 26,793 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
# ---------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------

from unittest.mock import MagicMock

import pytest
from azure.ai.evaluation._evaluators._tool_input_accuracy import _ToolInputAccuracyEvaluator
from azure.ai.evaluation._exceptions import EvaluationException


# This mock should return a dictionary that mimics the output of the prompty (the _flow call),
# which is then processed by the _do_eval method.
# The flow returns a dict with "llm_output" key containing the actual evaluation result.
async def flow_side_effect(timeout, **kwargs):
    query = kwargs.get("query", "")
    tool_calls = kwargs.get("tool_calls", [])
    tool_definitions = kwargs.get("tool_definitions", {})

    # Mock different scenarios based on query content
    if "all_correct" in str(query).lower():
        # All parameters are correct
        total_params = 2
        correct_params = 2
        llm_output = {
            "chain_of_thought": "All parameters are properly grounded, have correct types, and follow the required format.",
            "details": {
                "total_parameters_passed": total_params,
                "correct_parameters_passed": correct_params,
                "incorrect_parameters": [],
            },
            "result": 1,  # PASS
        }
    elif "missing_required" in str(query).lower():
        # Missing required parameters
        total_params = 1
        correct_params = 1
        llm_output = {
            "chain_of_thought": "Missing required parameter 'location' for weather function.",
            "details": {
                "total_parameters_passed": total_params,
                "correct_parameters_passed": correct_params,
                "incorrect_parameters": ["Missing required parameter: location"],
            },
            "result": 0,  # FAIL
        }
    elif "wrong_type" in str(query).lower():
        # Wrong parameter type
        total_params = 2
        correct_params = 1
        llm_output = {
            "chain_of_thought": "Parameter 'temperature' should be number but received string.",
            "details": {
                "total_parameters_passed": total_params,
                "correct_parameters_passed": correct_params,
                "incorrect_parameters": ["Parameter 'temperature' has wrong type: expected number, got string"],
            },
            "result": 0,  # FAIL
        }
    elif "ungrounded" in str(query).lower():
        # Ungrounded parameters
        total_params = 2
        correct_params = 1
        llm_output = {
            "chain_of_thought": "Parameter 'location' value 'Mars' is not grounded in conversation history.",
            "details": {
                "total_parameters_passed": total_params,
                "correct_parameters_passed": correct_params,
                "incorrect_parameters": ["Parameter 'location' value not grounded in conversation history"],
            },
            "result": 0,  # FAIL
        }
    elif "unexpected_param" in str(query).lower():
        # Unexpected parameters
        total_params = 3
        correct_params = 2
        llm_output = {
            "chain_of_thought": "Unexpected parameter 'extra_param' not defined in tool definition.",
            "details": {
                "total_parameters_passed": total_params,
                "correct_parameters_passed": correct_params,
                "incorrect_parameters": ["Unexpected parameter: extra_param"],
            },
            "result": 0,  # FAIL
        }
    elif "mixed_errors" in str(query).lower():
        # Multiple errors
        total_params = 4
        correct_params = 1
        llm_output = {
            "chain_of_thought": "Multiple parameter errors found.",
            "details": {
                "total_parameters_passed": total_params,
                "correct_parameters_passed": correct_params,
                "incorrect_parameters": [
                    "Missing required parameter: location",
                    "Parameter 'temperature' has wrong type",
                    "Unexpected parameter: extra_param",
                ],
            },
            "result": 0,  # FAIL
        }
    elif "invalid_result" in str(query).lower():
        # Return invalid result to trigger exception
        llm_output = {
            "chain_of_thought": "This should trigger an exception.",
            "details": {"total_parameters_passed": 1, "correct_parameters_passed": 1, "incorrect_parameters": []},
            "result": 5,  # Invalid result
        }
    else:
        # Default case - all correct
        total_params = 1
        correct_params = 1
        llm_output = {
            "chain_of_thought": "Default evaluation - parameters are correct.",
            "details": {
                "total_parameters_passed": total_params,
                "correct_parameters_passed": correct_params,
                "incorrect_parameters": [],
            },
            "result": 1,  # PASS
        }

    # Return in the format expected by _do_eval: wrapped in llm_output key
    return {"llm_output": llm_output}


@pytest.mark.usefixtures("mock_model_config")
@pytest.mark.unittest
class TestToolInputAccuracyEvaluator:

    def test_evaluator_init(self, mock_model_config):
        """Test that the evaluator initializes correctly."""
        evaluator = _ToolInputAccuracyEvaluator(model_config=mock_model_config)
        assert evaluator is not None
        assert evaluator._RESULT_KEY == "tool_input_accuracy"

    def test_evaluate_all_correct_parameters(self, mock_model_config):
        """Test evaluation when all parameters are correct."""
        evaluator = _ToolInputAccuracyEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=flow_side_effect)

        query = "What is the weather in Paris? all_correct"
        response = [
            {
                "role": "assistant",
                "content": [
                    {
                        "type": "tool_call",
                        "tool_call_id": "call_123",
                        "name": "get_weather",
                        "arguments": {"location": "Paris", "units": "celsius"},
                    }
                ],
            }
        ]
        tool_definitions = [
            {
                "name": "get_weather",
                "type": "function",
                "description": "Get weather information for a location",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {"type": "string", "description": "The location to get weather for"},
                        "units": {
                            "type": "string",
                            "description": "Temperature units",
                            "enum": ["celsius", "fahrenheit"],
                        },
                    },
                    "required": ["location"],
                },
            }
        ]

        result = evaluator(query=query, response=response, tool_definitions=tool_definitions)

        key = _ToolInputAccuracyEvaluator._RESULT_KEY
        assert result is not None
        assert key in result
        assert f"{key}_result" in result
        assert f"{key}_reason" in result
        assert result[key] == 1
        assert result[f"{key}_result"] == "pass"
        assert f"{key}_details" in result
        assert result[f"{key}_details"]["parameter_extraction_accuracy"] == 100.0

    def test_evaluate_missing_required_parameters(self, mock_model_config):
        """Test evaluation when required parameters are missing."""
        evaluator = _ToolInputAccuracyEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=flow_side_effect)

        query = "Get weather missing_required"
        response = [
            {
                "role": "assistant",
                "content": [
                    {
                        "type": "tool_call",
                        "tool_call_id": "call_123",
                        "name": "get_weather",
                        "arguments": {"units": "celsius"},
                    }
                ],
            }
        ]
        tool_definitions = [
            {
                "name": "get_weather",
                "type": "function",
                "description": "Get weather information for a location",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {"type": "string", "description": "The location to get weather for"},
                        "units": {"type": "string", "description": "Temperature units"},
                    },
                    "required": ["location"],
                },
            }
        ]

        result = evaluator(query=query, response=response, tool_definitions=tool_definitions)

        key = _ToolInputAccuracyEvaluator._RESULT_KEY
        assert result is not None
        assert result[key] == 0
        assert result[f"{key}_result"] == "fail"
        assert "missing required parameter" in result[f"{key}_reason"].lower()
        assert f"{key}_details" in result
        assert result[f"{key}_details"]["parameter_extraction_accuracy"] == 100.0  # 1/1 correct param

    def test_evaluate_wrong_parameter_type(self, mock_model_config):
        """Test evaluation when parameters have wrong types."""
        evaluator = _ToolInputAccuracyEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=flow_side_effect)

        query = "Set temperature wrong_type"
        response = [
            {
                "role": "assistant",
                "content": [
                    {
                        "type": "tool_call",
                        "tool_call_id": "call_123",
                        "name": "set_temperature",
                        "arguments": {"room": "bedroom", "temperature": "twenty"},
                    }
                ],
            }
        ]
        tool_definitions = [
            {
                "name": "set_temperature",
                "type": "function",
                "description": "Set room temperature",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "room": {"type": "string", "description": "The room name"},
                        "temperature": {"type": "number", "description": "Temperature in degrees"},
                    },
                    "required": ["room", "temperature"],
                },
            }
        ]

        result = evaluator(query=query, response=response, tool_definitions=tool_definitions)

        key = _ToolInputAccuracyEvaluator._RESULT_KEY
        assert result is not None
        assert result[key] == 0
        assert result[f"{key}_result"] == "fail"
        assert "number" in result[f"{key}_reason"].lower() and "string" in result[f"{key}_reason"].lower()
        assert f"{key}_details" in result
        assert result[f"{key}_details"]["parameter_extraction_accuracy"] == 50.0  # 1/2 correct params

    def test_evaluate_ungrounded_parameters(self, mock_model_config):
        """Test evaluation when parameters are not grounded in conversation."""
        evaluator = _ToolInputAccuracyEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=flow_side_effect)

        query = "What's the weather like? ungrounded"
        response = [
            {
                "role": "assistant",
                "content": [
                    {
                        "type": "tool_call",
                        "tool_call_id": "call_123",
                        "name": "get_weather",
                        "arguments": {"location": "Mars", "units": "celsius"},
                    }
                ],
            }
        ]
        tool_definitions = [
            {
                "name": "get_weather",
                "type": "function",
                "description": "Get weather information for a location",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {"type": "string", "description": "The location to get weather for"},
                        "units": {"type": "string", "description": "Temperature units"},
                    },
                    "required": ["location"],
                },
            }
        ]

        result = evaluator(query=query, response=response, tool_definitions=tool_definitions)

        key = _ToolInputAccuracyEvaluator._RESULT_KEY
        assert result is not None
        assert result[key] == 0
        assert result[f"{key}_result"] == "fail"
        assert "not grounded" in result[f"{key}_reason"].lower()
        assert f"{key}_details" in result
        assert result[f"{key}_details"]["parameter_extraction_accuracy"] == 50.0  # 1/2 correct params

    def test_evaluate_unexpected_parameters(self, mock_model_config):
        """Test evaluation when unexpected parameters are provided."""
        evaluator = _ToolInputAccuracyEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=flow_side_effect)

        query = "Get weather info unexpected_param"
        response = [
            {
                "role": "assistant",
                "content": [
                    {
                        "type": "tool_call",
                        "tool_call_id": "call_123",
                        "name": "get_weather",
                        "arguments": {"location": "Paris", "units": "celsius", "extra_param": "unexpected"},
                    }
                ],
            }
        ]
        tool_definitions = [
            {
                "name": "get_weather",
                "type": "function",
                "description": "Get weather information for a location",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {"type": "string", "description": "The location to get weather for"},
                        "units": {"type": "string", "description": "Temperature units"},
                    },
                    "required": ["location"],
                },
            }
        ]

        result = evaluator(query=query, response=response, tool_definitions=tool_definitions)

        key = _ToolInputAccuracyEvaluator._RESULT_KEY
        assert result is not None
        assert result[key] == 0
        assert result[f"{key}_result"] == "fail"
        assert "unexpected parameter" in result[f"{key}_reason"].lower()
        assert f"{key}_details" in result
        assert result[f"{key}_details"]["parameter_extraction_accuracy"] == 66.67  # 2/3 correct params

    def test_evaluate_mixed_errors(self, mock_model_config):
        """Test evaluation with multiple types of errors."""
        evaluator = _ToolInputAccuracyEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=flow_side_effect)

        query = "Complex query with mixed_errors"
        response = [
            {
                "role": "assistant",
                "content": [
                    {
                        "type": "tool_call",
                        "tool_call_id": "call_123",
                        "name": "complex_function",
                        "arguments": {"param1": "correct", "param2": "wrong_type", "extra_param": "unexpected"},
                    }
                ],
            }
        ]
        tool_definitions = [
            {
                "name": "complex_function",
                "type": "function",
                "description": "A complex function with multiple parameters",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "param1": {"type": "string", "description": "First parameter"},
                        "param2": {"type": "number", "description": "Second parameter"},
                        "required_param": {"type": "string", "description": "Required parameter"},
                    },
                    "required": ["param1", "required_param"],
                },
            }
        ]

        result = evaluator(query=query, response=response, tool_definitions=tool_definitions)

        key = _ToolInputAccuracyEvaluator._RESULT_KEY
        assert result is not None
        assert result[key] == 0
        assert result[f"{key}_result"] == "fail"
        assert (
            "multiple" in result[f"{key}_reason"].lower() or len(result[f"{key}_details"]["incorrect_parameters"]) >= 2
        )
        assert f"{key}_details" in result
        assert result[f"{key}_details"]["parameter_extraction_accuracy"] == 25.0  # 1/4 correct params

    def test_evaluate_no_tool_calls(self, mock_model_config):
        """Test evaluation when no tool calls are present."""
        evaluator = _ToolInputAccuracyEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=flow_side_effect)

        query = "Simple question without tool calls"
        response = [{"role": "assistant", "content": "I can help you with that."}]
        tool_definitions = [{"name": "get_weather", "type": "function", "description": "Get weather information"}]

        result = evaluator(query=query, response=response, tool_definitions=tool_definitions)

        key = _ToolInputAccuracyEvaluator._RESULT_KEY
        assert result is not None
        assert result[key] == "not applicable"
        assert result[f"{key}_result"] == "pass"
        assert _ToolInputAccuracyEvaluator._NO_TOOL_CALLS_MESSAGE in result[f"{key}_reason"]

    def test_evaluate_no_tool_definitions(self, mock_model_config):
        """Test evaluation when no tool definitions are provided."""
        evaluator = _ToolInputAccuracyEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=flow_side_effect)

        query = "Get weather"
        response = [
            {
                "role": "assistant",
                "content": [
                    {
                        "type": "tool_call",
                        "tool_call_id": "call_123",
                        "name": "get_weather",
                        "arguments": {"location": "Paris"},
                    }
                ],
            }
        ]
        tool_definitions = []

        result = evaluator(query=query, response=response, tool_definitions=tool_definitions)

        key = _ToolInputAccuracyEvaluator._RESULT_KEY
        assert result is not None
        assert result[key] == "not applicable"
        assert result[f"{key}_result"] == "pass"
        assert _ToolInputAccuracyEvaluator._NO_TOOL_DEFINITIONS_MESSAGE in result[f"{key}_reason"]

    def test_evaluate_missing_tool_definitions(self, mock_model_config):
        """Test evaluation when tool definitions are missing for some tool calls."""
        evaluator = _ToolInputAccuracyEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=flow_side_effect)

        query = "Get weather"
        response = [
            {
                "role": "assistant",
                "content": [
                    {
                        "type": "tool_call",
                        "tool_call_id": "call_123",
                        "name": "get_weather",
                        "arguments": {"location": "Paris"},
                    }
                ],
            }
        ]
        tool_definitions = [{"name": "different_function", "type": "function", "description": "A different function"}]

        result = evaluator(query=query, response=response, tool_definitions=tool_definitions)

        key = _ToolInputAccuracyEvaluator._RESULT_KEY
        assert result is not None
        assert result[key] == "not applicable"
        assert result[f"{key}_result"] == "pass"
        assert _ToolInputAccuracyEvaluator._TOOL_DEFINITIONS_MISSING_MESSAGE in result[f"{key}_reason"]

    def test_evaluate_invalid_result_value(self, mock_model_config):
        """Test that invalid result values raise an exception."""
        evaluator = _ToolInputAccuracyEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=flow_side_effect)

        query = "Test invalid_result"
        response = [
            {
                "role": "assistant",
                "content": [
                    {
                        "type": "tool_call",
                        "tool_call_id": "call_123",
                        "name": "test_function",
                        "arguments": {"param": "value"},
                    }
                ],
            }
        ]
        tool_definitions = [
            {
                "name": "test_function",
                "type": "function",
                "description": "Test function",
                "parameters": {
                    "type": "object",
                    "properties": {"param": {"type": "string", "description": "Test parameter"}},
                },
            }
        ]

        with pytest.raises(EvaluationException) as exc_info:
            evaluator(query=query, response=response, tool_definitions=tool_definitions)

        assert "Invalid result value" in str(exc_info.value)

    def test_evaluate_no_response(self, mock_model_config):
        """Test evaluation when no response is provided."""
        evaluator = _ToolInputAccuracyEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=flow_side_effect)

        query = "Get weather"
        tool_definitions = [{"name": "get_weather", "type": "function", "description": "Get weather information"}]

        result = evaluator(query=query, response=None, tool_definitions=tool_definitions)

        key = _ToolInputAccuracyEvaluator._RESULT_KEY
        assert result is not None
        assert result[key] == "not applicable"
        assert result[f"{key}_result"] == "pass"
        assert "Response parameter is required" in result[f"{key}_reason"]

    def test_parameter_extraction_accuracy_calculation(self, mock_model_config):
        """Test the parameter extraction accuracy calculation."""
        evaluator = _ToolInputAccuracyEvaluator(model_config=mock_model_config)

        # Test with some correct parameters
        details = {
            "total_parameters_passed": 5,
            "correct_parameters_passed": 3,
            "incorrect_parameters": ["param1", "param2"],
        }
        accuracy = evaluator._calculate_parameter_extraction_accuracy(details)
        assert accuracy == 60.0

        # Test with all correct parameters
        details = {"total_parameters_passed": 4, "correct_parameters_passed": 4, "incorrect_parameters": []}
        accuracy = evaluator._calculate_parameter_extraction_accuracy(details)
        assert accuracy == 100.0

        # Test with no parameters
        details = {"total_parameters_passed": 0, "correct_parameters_passed": 0, "incorrect_parameters": []}
        accuracy = evaluator._calculate_parameter_extraction_accuracy(details)
        assert accuracy == 100.0

        # Test with all incorrect parameters
        details = {
            "total_parameters_passed": 3,
            "correct_parameters_passed": 0,
            "incorrect_parameters": ["param1", "param2", "param3"],
        }
        accuracy = evaluator._calculate_parameter_extraction_accuracy(details)
        assert accuracy == 0.0

    def test_evaluate_with_conversation_history(self, mock_model_config):
        """Test evaluation with conversation history format."""
        evaluator = _ToolInputAccuracyEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=flow_side_effect)

        query = [
            {"role": "user", "content": "What's the weather in Paris?"},
            {"role": "assistant", "content": "I'll check the weather for you."},
        ]
        response = [
            {
                "role": "assistant",
                "content": [
                    {
                        "type": "tool_call",
                        "tool_call_id": "call_123",
                        "name": "get_weather",
                        "arguments": {"location": "Paris"},
                    }
                ],
            }
        ]
        tool_definitions = [
            {
                "name": "get_weather",
                "type": "function",
                "description": "Get weather information for a location",
                "parameters": {
                    "type": "object",
                    "properties": {"location": {"type": "string", "description": "The location to get weather for"}},
                    "required": ["location"],
                },
            }
        ]

        result = evaluator(query=query, response=response, tool_definitions=tool_definitions)

        key = _ToolInputAccuracyEvaluator._RESULT_KEY
        assert result is not None
        assert key in result
        assert f"{key}_result" in result

    def test_evaluate_with_single_tool_definition(self, mock_model_config):
        """Test evaluation with a single tool definition (not in list format)."""
        evaluator = _ToolInputAccuracyEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=flow_side_effect)

        query = "Get weather all_correct"
        response = [
            {
                "role": "assistant",
                "content": [
                    {
                        "type": "tool_call",
                        "tool_call_id": "call_123",
                        "name": "get_weather",
                        "arguments": {"location": "Paris"},
                    }
                ],
            }
        ]
        # Single tool definition (not in list)
        tool_definitions = {
            "name": "get_weather",
            "type": "function",
            "description": "Get weather information for a location",
            "parameters": {
                "type": "object",
                "properties": {"location": {"type": "string", "description": "The location to get weather for"}},
                "required": ["location"],
            },
        }

        result = evaluator(query=query, response=response, tool_definitions=tool_definitions)

        key = _ToolInputAccuracyEvaluator._RESULT_KEY
        assert result is not None
        assert result[key] == 1
        assert result[f"{key}_result"] == "pass"