File: test_tool_selection_evaluator.py

package info (click to toggle)
python-azure 20251104%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 770,224 kB
  • sloc: python: 6,357,217; ansic: 804; javascript: 287; makefile: 198; sh: 193; xml: 109
file content (286 lines) | stat: -rw-r--r-- 11,021 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from unittest.mock import MagicMock

import pytest
from azure.ai.evaluation._evaluators._tool_selection import _ToolSelectionEvaluator
from azure.ai.evaluation._exceptions import EvaluationException


# Mock function for Tool Selection evaluator flow side effect
async def tool_selection_flow_side_effect(timeout, **kwargs):
    tool_calls = kwargs.get("tool_calls", [])
    tool_definitions = kwargs.get("tool_definitions", [])
    query = kwargs.get("query", "")

    # Simple scoring logic based on query and tool selection (binary: 0 or 1)
    score = 0  # Default fail score
    reason = "Tools selected are not relevant to the query"

    # Note: For ToolSelectionEvaluator, tool_calls is a list of strings (tool names)
    # Convert tool_calls to strings for consistent handling
    tool_names = [str(tc).lower() for tc in tool_calls]

    # Check for relevant tool usage patterns
    if "weather" in query.lower() and any("weather" in name for name in tool_names):
        score = 1
        reason = "Weather tool correctly selected for weather query"
    elif "search" in query.lower() and any("search" in name for name in tool_names):
        score = 1
        reason = "Search tool correctly selected for search query"
    elif "data" in query.lower() and any("data" in name for name in tool_names):
        score = 1
        reason = "Data tool correctly selected for data query"
    elif "financial" in query.lower() and any("financial" in name for name in tool_names):
        score = 1
        reason = "Financial tool correctly selected for financial query"
    elif len(tool_calls) == 0:
        score = 0
        reason = "No tools selected when tools were needed"
    elif "buy" in query.lower() and any("weather" in name for name in tool_names):
        score = 0
        reason = "Weather tool incorrectly selected for purchase query"

    # Handle invalid scenarios - check if any tool name contains "invalid"
    if any("invalid" in str(tc).lower() for tc in tool_calls):
        return {
            "llm_output": {
                "explanation": "Invalid tool call detected",
                "score": "invalid_score",
                "details": {},
            }
        }

    return {
        "llm_output": {
            "explanation": reason,
            "score": score,
            "details": {
                "tools_available": len(tool_definitions),
                "tools_selected": len(tool_calls),
            },
        }
    }


@pytest.mark.usefixtures("mock_model_config")
@pytest.mark.unittest
class TestToolSelectionEvaluator:
    def test_evaluate_tool_selection_pass_relevant_tools(self, mock_model_config):
        evaluator = _ToolSelectionEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=tool_selection_flow_side_effect)

        query = "What's the weather like today?"
        tool_calls = [
            {
                "type": "tool_call",
                "tool_call_id": "call_weather",
                "name": "get_weather",
                "arguments": {"location": "current"},
            }
        ]
        tool_definitions = [
            {
                "name": "get_weather",
                "type": "function",
                "description": "Get weather information",
                "parameters": {"type": "object", "properties": {"location": {"type": "string"}}},
            }
        ]

        result = evaluator(query=query, tool_calls=tool_calls, tool_definitions=tool_definitions)

        key = _ToolSelectionEvaluator._RESULT_KEY
        assert result is not None
        assert key in result
        assert result[key] == 1
        assert result[f"{key}_result"] == "pass"
        assert f"{key}_reason" in result

    def test_evaluate_tool_selection_fail_irrelevant_tools(self, mock_model_config):
        evaluator = _ToolSelectionEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=tool_selection_flow_side_effect)

        query = "I want to buy a jacket"
        tool_calls = [
            {
                "type": "tool_call",
                "tool_call_id": "call_weather",
                "name": "get_weather",
                "arguments": {"location": "current"},
            }
        ]
        tool_definitions = [
            {
                "name": "get_weather",
                "type": "function",
                "description": "Get weather information",
                "parameters": {"type": "object", "properties": {"location": {"type": "string"}}},
            },
            {
                "name": "buy_item",
                "type": "function",
                "description": "Purchase an item",
                "parameters": {"type": "object", "properties": {"item": {"type": "string"}}},
            },
        ]

        result = evaluator(query=query, tool_calls=tool_calls, tool_definitions=tool_definitions)

        key = _ToolSelectionEvaluator._RESULT_KEY
        assert result is not None
        assert key in result
        assert result[key] == 0
        assert result[f"{key}_result"] == "fail"
        assert f"{key}_reason" in result

    def test_evaluate_tool_selection_pass_search_query(self, mock_model_config):
        evaluator = _ToolSelectionEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=tool_selection_flow_side_effect)

        query = "Search for information about Python programming"
        tool_calls = [
            {
                "type": "tool_call",
                "tool_call_id": "call_search",
                "name": "web_search",
                "arguments": {"query": "Python programming"},
            }
        ]
        tool_definitions = [
            {
                "name": "web_search",
                "type": "function",
                "description": "Search the web for information",
                "parameters": {"type": "object", "properties": {"query": {"type": "string"}}},
            }
        ]

        result = evaluator(query=query, tool_calls=tool_calls, tool_definitions=tool_definitions)

        key = _ToolSelectionEvaluator._RESULT_KEY
        assert result is not None
        assert result[key] == 1
        assert result[f"{key}_result"] == "pass"

    def test_evaluate_tool_selection_pass_data_query(self, mock_model_config):
        evaluator = _ToolSelectionEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=tool_selection_flow_side_effect)

        query = "Analyze the data trends"
        tool_calls = [
            {
                "type": "tool_call",
                "tool_call_id": "call_data",
                "name": "analyze_data",
                "arguments": {"dataset": "trends"},
            }
        ]
        tool_definitions = [
            {
                "name": "analyze_data",
                "type": "function",
                "description": "Analyze data patterns",
                "parameters": {"type": "object", "properties": {"dataset": {"type": "string"}}},
            }
        ]

        result = evaluator(query=query, tool_calls=tool_calls, tool_definitions=tool_definitions)

        key = _ToolSelectionEvaluator._RESULT_KEY
        assert result is not None
        assert result[key] == 1
        assert result[f"{key}_result"] == "pass"

    def test_evaluate_tool_selection_pass_financial_query(self, mock_model_config):
        evaluator = _ToolSelectionEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=tool_selection_flow_side_effect)

        query = "Check my financial portfolio"
        tool_calls = [
            {
                "type": "tool_call",
                "tool_call_id": "call_financial",
                "name": "get_financial_data",
                "arguments": {"account": "portfolio"},
            }
        ]
        tool_definitions = [
            {
                "name": "get_financial_data",
                "type": "function",
                "description": "Get financial account information",
                "parameters": {"type": "object", "properties": {"account": {"type": "string"}}},
            }
        ]

        result = evaluator(query=query, tool_calls=tool_calls, tool_definitions=tool_definitions)

        key = _ToolSelectionEvaluator._RESULT_KEY
        assert result is not None
        assert result[key] == 1
        assert result[f"{key}_result"] == "pass"

    def test_evaluate_tool_selection_fail_no_tools_selected(self, mock_model_config):
        evaluator = _ToolSelectionEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=tool_selection_flow_side_effect)

        query = "What's the weather like today?"
        tool_calls = []
        tool_definitions = [
            {
                "name": "get_weather",
                "type": "function",
                "description": "Get weather information",
                "parameters": {"type": "object", "properties": {"location": {"type": "string"}}},
            }
        ]

        result = evaluator(query=query, tool_calls=tool_calls, tool_definitions=tool_definitions)

        key = _ToolSelectionEvaluator._RESULT_KEY
        assert result is not None
        assert result[key] == "not applicable"
        assert result[f"{key}_result"] == "pass"
        assert f"{key}_reason" in result

    def test_evaluate_tool_selection_not_applicable_no_tool_definitions(self, mock_model_config):
        evaluator = _ToolSelectionEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=tool_selection_flow_side_effect)

        query = "What's the weather like today?"
        tool_calls = []
        tool_definitions = []

        result = evaluator(query=query, tool_calls=tool_calls, tool_definitions=tool_definitions)

        key = _ToolSelectionEvaluator._RESULT_KEY
        assert result is not None
        assert result[key] == "not applicable"
        assert result[f"{key}_result"] == "pass"
        assert f"{key}_reason" in result

    def test_evaluate_tool_selection_exception_invalid_score(self, mock_model_config):
        evaluator = _ToolSelectionEvaluator(model_config=mock_model_config)
        evaluator._flow = MagicMock(side_effect=tool_selection_flow_side_effect)

        query = "Test invalid scenario"
        tool_calls = [
            {
                "type": "tool_call",
                "tool_call_id": "call_invalid",
                "name": "invalid_tool",
                "arguments": {},
            }
        ]
        tool_definitions = [
            {
                "name": "invalid_tool",
                "type": "function",
                "description": "Test tool",
                "parameters": {"type": "object"},
            }
        ]

        with pytest.raises(EvaluationException) as exc_info:
            evaluator(query=query, tool_calls=tool_calls, tool_definitions=tool_definitions)

        assert "Invalid score value" in str(exc_info.value)