File: main.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (579 lines) | stat: -rw-r--r-- 20,285 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# mypy: ignore-errors
"""Bilingual weekend planner sample with full GenAI telemetry capture."""

from __future__ import annotations

import json
import logging
import os
import random
from dataclasses import dataclass
from datetime import datetime, timezone
from typing import Callable
from urllib.parse import urlparse

import azure.identity
import openai
from agents import (
    Agent,
    OpenAIChatCompletionsModel,
    Runner,
    function_tool,
    set_default_openai_client,
    set_tracing_disabled,
)
from agents.tracing import (
    agent_span as tracing_agent_span,
    function_span as tracing_function_span,
    generation_span as tracing_generation_span,
    trace as tracing_trace,
)
from azure.ai.agentserver.core import AgentRunContext, FoundryCBAgent
from azure.ai.agentserver.core.models import (
    CreateResponse,
    Response as OpenAIResponse,
)
from azure.ai.agentserver.core.models.projects import (
    ItemContentOutputText,
    ResponseCompletedEvent,
    ResponseCreatedEvent,
    ResponseOutputItemAddedEvent,
    ResponsesAssistantMessageItemResource,
    ResponseTextDeltaEvent,
    ResponseTextDoneEvent,
)
from dotenv import load_dotenv
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
from opentelemetry.instrumentation.openai_agents import OpenAIAgentsInstrumentor
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor, ConsoleSpanExporter
from rich.logging import RichHandler

try:
    from azure.monitor.opentelemetry.exporter import (  # mypy: ignore
        AzureMonitorTraceExporter,
    )
except Exception:  # pragma: no cover
    AzureMonitorTraceExporter = None  # mypy: ignore

# Load env early so adapter init sees them
load_dotenv(override=True)


logging.basicConfig(
    level=logging.WARNING,
    format="%(message)s",
    datefmt="[%X]",
    handlers=[RichHandler()],
)
logger = logging.getLogger("bilingual_weekend_planner")
RUN_MODE = os.getenv("WEEKEND_PLANNER_MODE", "container").lower()


@dataclass
class _ApiConfig:
    """Helper describing how to create the OpenAI client."""

    build_client: Callable[[], openai.AsyncOpenAI]
    model_name: str
    base_url: str
    provider: str


def _set_capture_env(provider: str, base_url: str) -> None:
    """Enable all GenAI capture toggles prior to instrumentation."""

    capture_defaults = {
        "OTEL_INSTRUMENTATION_OPENAI_AGENTS_CAPTURE_CONTENT": "true",
        "OTEL_INSTRUMENTATION_OPENAI_AGENTS_CAPTURE_METRICS": "true",
        "OTEL_GENAI_CAPTURE_MESSAGES": "true",
        "OTEL_GENAI_CAPTURE_SYSTEM_INSTRUCTIONS": "true",
        "OTEL_GENAI_CAPTURE_TOOL_DEFINITIONS": "true",
        "OTEL_GENAI_EMIT_OPERATION_DETAILS": "true",
        "OTEL_GENAI_AGENT_NAME": os.getenv(
            "OTEL_GENAI_AGENT_NAME",
            "Bilingual Weekend Planner Agent",
        ),
        "OTEL_GENAI_AGENT_DESCRIPTION": os.getenv(
            "OTEL_GENAI_AGENT_DESCRIPTION",
            "Assistant that plans weekend activities using weather and events data in multiple languages",
        ),
        "OTEL_GENAI_AGENT_ID": os.getenv(
            "OTEL_GENAI_AGENT_ID", "bilingual-weekend-planner"
        ),
    }
    for env_key, value in capture_defaults.items():
        os.environ.setdefault(env_key, value)

    parsed = urlparse(base_url)
    if parsed.hostname:
        os.environ.setdefault("OTEL_GENAI_SERVER_ADDRESS", parsed.hostname)
    if parsed.port:
        os.environ.setdefault("OTEL_GENAI_SERVER_PORT", str(parsed.port))


def _resolve_api_config() -> _ApiConfig:
    """Return the client configuration for the requested host."""

    host = os.getenv("API_HOST", "github").lower()

    if host == "github":
        base_url = os.getenv(
            "GITHUB_OPENAI_BASE_URL",
            "https://models.inference.ai.azure.com",
        ).rstrip("/")
        model_name = os.getenv("GITHUB_MODEL", "gpt-4o")
        api_key = os.environ.get("GITHUB_TOKEN")
        if not api_key:
            if RUN_MODE != "demo":
                raise RuntimeError("GITHUB_TOKEN is required when API_HOST=github")
            api_key = "demo-key"

        def _build_client() -> openai.AsyncOpenAI:
            return openai.AsyncOpenAI(base_url=base_url, api_key=api_key)

        return _ApiConfig(
            build_client=_build_client,
            model_name=model_name,
            base_url=base_url,
            provider="azure.ai.inference",
        )

    if host == "azure":
        # Explicitly check for required environment variables
        if "AZURE_OPENAI_ENDPOINT" not in os.environ:
            raise ValueError("AZURE_OPENAI_ENDPOINT is required when API_HOST=azure")
        if "AZURE_OPENAI_VERSION" not in os.environ:
            raise ValueError("AZURE_OPENAI_VERSION is required when API_HOST=azure")
        if "AZURE_OPENAI_CHAT_DEPLOYMENT" not in os.environ:
            raise ValueError(
                "AZURE_OPENAI_CHAT_DEPLOYMENT is required when API_HOST=azure"
            )
        endpoint = os.environ["AZURE_OPENAI_ENDPOINT"].rstrip("/")
        api_version = os.environ["AZURE_OPENAI_VERSION"]
        deployment = os.environ["AZURE_OPENAI_CHAT_DEPLOYMENT"]

        credential = azure.identity.DefaultAzureCredential()
        token_provider = azure.identity.get_bearer_token_provider(
            credential,
            "https://cognitiveservices.azure.com/.default",
        )

        def _build_client() -> openai.AsyncAzureOpenAI:
            return openai.AsyncAzureOpenAI(
                api_version=api_version,
                azure_endpoint=endpoint,
                azure_ad_token_provider=token_provider,
            )

        return _ApiConfig(
            build_client=_build_client,
            model_name=deployment,
            base_url=endpoint,
            provider="azure.ai.openai",
        )

    raise ValueError(
        f"Unsupported API_HOST '{host}'. Supported values are 'github' or 'azure'."
    )


def _configure_otel() -> None:
    """Configure the tracer provider and exporters."""

    grpc_endpoint = os.getenv("OTEL_EXPORTER_OTLP_GRPC_ENDPOINT")
    if not grpc_endpoint:
        default_otlp_endpoint = os.getenv("OTEL_EXPORTER_OTLP_ENDPOINT")
        protocol = os.getenv("OTEL_EXPORTER_OTLP_PROTOCOL", "grpc").lower()
        if default_otlp_endpoint and protocol == "grpc":
            grpc_endpoint = default_otlp_endpoint

    conn = os.getenv("APPLICATION_INSIGHTS_CONNECTION_STRING")
    resource = Resource.create(
        {
            "service.name": "weekend-planner-service",
            "service.namespace": "leisure-orchestration",
            "service.version": os.getenv("SERVICE_VERSION", "1.0.0"),
        }
    )

    tracer_provider = TracerProvider(resource=resource)

    if grpc_endpoint:
        tracer_provider.add_span_processor(
            BatchSpanProcessor(OTLPSpanExporter(endpoint=grpc_endpoint))
        )
        print(f"[otel] OTLP gRPC exporter configured ({grpc_endpoint})")
    elif conn:
        if AzureMonitorTraceExporter is None:
            print(
                "Warning: Azure Monitor exporter not installed. "
                "Install with: pip install azure-monitor-opentelemetry-exporter",
            )
            tracer_provider.add_span_processor(
                BatchSpanProcessor(ConsoleSpanExporter())
            )
        else:
            tracer_provider.add_span_processor(
                BatchSpanProcessor(
                    AzureMonitorTraceExporter.from_connection_string(conn)
                )
            )
            print("[otel] Azure Monitor trace exporter configured")
    else:
        tracer_provider.add_span_processor(BatchSpanProcessor(ConsoleSpanExporter()))
        print("[otel] Console span exporter configured")
        print(
            "[otel] Set APPLICATION_INSIGHTS_CONNECTION_STRING to export to Application Insights "
            "instead of the console",
        )

    trace.set_tracer_provider(tracer_provider)


api_config = _resolve_api_config()
_set_capture_env(api_config.provider, api_config.base_url)
_configure_otel()
OpenAIAgentsInstrumentor().instrument(
    tracer_provider=trace.get_tracer_provider(),
    capture_message_content="span_and_event",
    agent_name="Weekend Planner",
    base_url=api_config.base_url,
    system=api_config.provider,
)

client = api_config.build_client()
set_default_openai_client(client)
set_tracing_disabled(False)


def _chat_model() -> OpenAIChatCompletionsModel:
    """Return the chat completions model used for weekend planning."""

    return OpenAIChatCompletionsModel(model=api_config.model_name, openai_client=client)


SUNNY_WEATHER_PROBABILITY = 0.05


@function_tool
def get_weather(city: str) -> dict[str, object]:
    """Fetch mock weather information for the requested city."""

    logger.info("Getting weather for %s", city)
    if random.random() < SUNNY_WEATHER_PROBABILITY:
        return {"city": city, "temperature": 72, "description": "Sunny"}
    return {"city": city, "temperature": 60, "description": "Rainy"}


@function_tool
def get_activities(city: str, date: str) -> list[dict[str, object]]:
    """Return mock activities for the supplied city and date."""

    logger.info("Getting activities for %s on %s", city, date)
    return [
        {"name": "Hiking", "location": city},
        {"name": "Beach", "location": city},
        {"name": "Museum", "location": city},
    ]


@function_tool
def get_current_date() -> str:
    """Return the current date as YYYY-MM-DD."""

    logger.info("Getting current date")
    return datetime.now().strftime("%Y-%m-%d")


ENGLISH_WEEKEND_PLANNER = Agent(
    name="Weekend Planner (English)",
    instructions=(
        "You help English-speaking travelers plan their weekends. "
        "Use the available tools to gather the weekend date, current weather, and local activities. "
        "Only recommend activities that align with the weather and include the date in your final response."
    ),
    tools=[get_weather, get_activities, get_current_date],
    model=_chat_model(),
)

# cSpell:disable
SPANISH_WEEKEND_PLANNER = Agent(
    name="Planificador de fin de semana (Español)",
    instructions=(
        "Ayudas a viajeros hispanohablantes a planificar su fin de semana. "
        "Usa las herramientas disponibles para obtener la fecha, el clima y actividades locales. "
        "Recomienda actividades acordes al clima e incluye la fecha del fin de semana en tu respuesta."
    ),
    tools=[get_weather, get_activities, get_current_date],
    model=_chat_model(),
)

TRIAGE_AGENT = Agent(
    name="Weekend Planner Triage",
    instructions=(
        "Revisa el idioma del viajero. "
        "Si el mensaje está en español, realiza un handoff a 'Planificador de fin de semana (Español)'. "
        "De lo contrario, usa 'Weekend Planner (English)'."
    ),
    handoffs=[SPANISH_WEEKEND_PLANNER, ENGLISH_WEEKEND_PLANNER],
    model=_chat_model(),
)
# cSpell:enable


def _root_span_name(provider: str) -> str:
    return f"weekend_planning_session[{provider}]"


def _apply_weekend_semconv(
    span: trace.Span,
    *,
    user_text: str,
    final_text: str,
    conversation_id: str | None,
    response_id: str,
    final_agent_name: str | None,
    success: bool,
) -> None:
    parsed = urlparse(api_config.base_url)
    if parsed.hostname:
        span.set_attribute("server.address", parsed.hostname)
    if parsed.port:
        span.set_attribute("server.port", parsed.port)

    span.set_attribute("gen_ai.operation.name", "invoke_agent")
    span.set_attribute("gen_ai.provider.name", api_config.provider)
    span.set_attribute("gen_ai.request.model", api_config.model_name)
    span.set_attribute("gen_ai.output.type", "text")
    span.set_attribute("gen_ai.response.model", api_config.model_name)
    span.set_attribute("gen_ai.response.id", response_id)
    span.set_attribute(
        "gen_ai.response.finish_reasons",
        ["stop"] if success else ["error"],
    )

    if conversation_id:
        span.set_attribute("gen_ai.conversation.id", conversation_id)
    if TRIAGE_AGENT.instructions:
        span.set_attribute("gen_ai.system_instructions", TRIAGE_AGENT.instructions)
    if final_agent_name:
        span.set_attribute("gen_ai.agent.name", final_agent_name)
    else:
        span.set_attribute("gen_ai.agent.name", TRIAGE_AGENT.name)
    if user_text:
        span.set_attribute(
            "gen_ai.input.messages",
            json.dumps([{"role": "user", "content": user_text}]),
        )
    if final_text:
        span.set_attribute(
            "gen_ai.output.messages",
            json.dumps([{"role": "assistant", "content": final_text}]),
        )


def _extract_user_text(request: CreateResponse) -> str:
    """Extract the first user text input from the request body."""

    input = request.get("input")
    if not input:
        return ""

    first = input[0]
    content = first.get("content", None) if isinstance(first, dict) else first
    if isinstance(content, str):
        return content

    if isinstance(content, list):
        for item in content:
            text = item.get("text", None)
            if text:
                return text
    return ""


def _stream_final_text(final_text: str, context: AgentRunContext):
    """Yield streaming events for the provided final text."""

    async def _async_stream():
        assembled = ""
        yield ResponseCreatedEvent(response=OpenAIResponse(output=[]))
        item_id = context.id_generator.generate_message_id()
        yield ResponseOutputItemAddedEvent(
            output_index=0,
            item=ResponsesAssistantMessageItemResource(
                id=item_id,
                status="in_progress",
                content=[ItemContentOutputText(text="", annotations=[])],
            ),
        )

        words = final_text.split(" ")
        for idx, token in enumerate(words):
            piece = token if idx == len(words) - 1 else token + " "
            assembled += piece
            yield ResponseTextDeltaEvent(output_index=0, content_index=0, delta=piece)

        yield ResponseTextDoneEvent(output_index=0, content_index=0, text=assembled)
        yield ResponseCompletedEvent(
            response=OpenAIResponse(
                metadata={},
                temperature=0.0,
                top_p=0.0,
                user="user",
                id=context.response_id,
                created_at=datetime.now(timezone.utc),
                output=[
                    ResponsesAssistantMessageItemResource(
                        id=item_id,
                        status="completed",
                        content=[ItemContentOutputText(text=assembled, annotations=[])],
                    )
                ],
            )
        )

    return _async_stream()


def dump(title: str, payload: object) -> None:
    """Pretty print helper for the tracing demo."""

    print(f"\n=== {title} ===")
    print(json.dumps(payload, indent=2))


def run_content_capture_demo() -> None:
    """Simulate an agent workflow using the tracing helpers without calling an API."""

    itinerary_prompt = [
        {"role": "system", "content": "Help travelers plan memorable weekends."},
        {"role": "user", "content": "I'm visiting Seattle this weekend."},
    ]
    tool_args = {"city": "Seattle", "date": "2025-05-17"}
    tool_result = {
        "forecast": "Light rain, highs 60°F",
        "packing_tips": ["rain jacket", "waterproof shoes"],
    }

    with tracing_trace("weekend-planner-simulation"):
        with tracing_agent_span(name="weekend_planner_demo") as agent:
            dump(
                "Agent span started",
                {"span_id": agent.span_id, "trace_id": agent.trace_id},
            )

            with tracing_generation_span(
                input=itinerary_prompt,
                output=[
                    {
                        "role": "assistant",
                        "content": (
                            "Day 1 explore Pike Place Market, Day 2 visit the Museum of Pop Culture, "
                            "Day 3 take the Bainbridge ferry if weather allows."
                        ),
                    }
                ],
                model=api_config.model_name,
                usage={
                    "input_tokens": 128,
                    "output_tokens": 96,
                    "total_tokens": 224,
                },
            ):
                pass

            with tracing_function_span(
                name="get_weather",
                input=json.dumps(tool_args),
                output=tool_result,
            ):
                pass

    print("\nWorkflow complete – spans exported to the configured OTLP endpoint.")


class WeekendPlannerContainer(FoundryCBAgent):
    """Container entry point that surfaces the weekend planner agent via FoundryCBAgent."""

    async def agent_run(self, context: AgentRunContext):
        request = context.request
        user_text = _extract_user_text(request)

        tracer = trace.get_tracer(__name__)
        with tracer.start_as_current_span(_root_span_name(api_config.provider)) as span:
            span.set_attribute("user.request", user_text)
            span.set_attribute("api.host", os.getenv("API_HOST", "github"))
            span.set_attribute("model.name", api_config.model_name)
            span.set_attribute("agent.name", TRIAGE_AGENT.name)
            span.set_attribute("triage.languages", "en,es")

            try:
                result = await Runner.run(TRIAGE_AGENT, input=user_text)
                final_text = str(result.final_output or "")
                span.set_attribute(
                    "agent.response", final_text[:500] if final_text else ""
                )
                final_agent = getattr(result, "last_agent", None)
                if final_agent and getattr(final_agent, "name", None):
                    span.set_attribute("agent.final", final_agent.name)
                span.set_attribute("request.success", True)
                _apply_weekend_semconv(
                    span,
                    user_text=user_text,
                    final_text=final_text,
                    conversation_id=context.conversation_id,
                    response_id=context.response_id,
                    final_agent_name=getattr(final_agent, "name", None),
                    success=True,
                )
                logger.info("Weekend planning completed successfully")
            except Exception as exc:  # pragma: no cover - defensive logging path
                span.record_exception(exc)
                span.set_attribute("request.success", False)
                span.set_attribute("error.type", exc.__class__.__name__)
                logger.error("Error during weekend planning: %s", exc)
                final_text = f"Error running agent: {exc}"
                _apply_weekend_semconv(
                    span,
                    user_text=user_text,
                    final_text=final_text,
                    conversation_id=context.conversation_id,
                    response_id=context.response_id,
                    final_agent_name=None,
                    success=False,
                )

        if request.get("stream", False):
            return _stream_final_text(final_text, context)

        response = OpenAIResponse(
            metadata={},
            temperature=0.0,
            top_p=0.0,
            user="user",
            id=context.response_id,
            created_at=datetime.now(timezone.utc),
            output=[
                ResponsesAssistantMessageItemResource(
                    id=context.id_generator.generate_message_id(),
                    status="completed",
                    content=[ItemContentOutputText(text=final_text, annotations=[])],
                )
            ],
        )
        return response


if __name__ == "__main__":
    logger.setLevel(logging.INFO)
    try:
        if RUN_MODE == "demo":
            run_content_capture_demo()
        else:
            WeekendPlannerContainer().run()
    finally:
        trace.get_tracer_provider().shutdown()