File: grade_documents.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (52 lines) | stat: -rw-r--r-- 1,709 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
from typing import Literal

from dotenv import load_dotenv
from langchain.chat_models import init_chat_model
from langgraph.graph import MessagesState
from pydantic import BaseModel, Field

GRADE_PROMPT = (
    "You are a grader assessing relevance of a retrieved document to a user question. \n "
    "Here is the retrieved document: \n\n {context} \n\n"
    "Here is the user question: {question} \n"
    "If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \n"
    "Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question."
)


# highlight-next-line
class GradeDocuments(BaseModel):
    """Grade documents using a binary score for relevance check."""

    binary_score: str = Field(
        description="Relevance score: 'yes' if relevant, or 'no' if not relevant"
    )


load_dotenv()
deployment_name = os.getenv("AZURE_OPENAI_CHAT_DEPLOYMENT_NAME", "gpt-4o")
grader_model = init_chat_model(f"azure_openai:{deployment_name}")


def grade_documents(
    state: MessagesState,
) -> Literal["generate_answer", "rewrite_question"]:
    """Determine whether the retrieved documents are relevant to the question."""
    question = state["messages"][0].content
    context = state["messages"][-1].content

    prompt = GRADE_PROMPT.format(question=question, context=context)
    response = (
        grader_model
        # highlight-next-line
        .with_structured_output(GradeDocuments).invoke(
            [{"role": "user", "content": prompt}]
        )
    )
    score = response.binary_score

    if score == "yes":
        return "generate_answer"
    else:
        return "rewrite_question"