1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
|
import os
from dotenv import load_dotenv
from langchain_core.tools import create_retriever_tool
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_openai import AzureOpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
load_dotenv()
deployment_name = os.getenv(
"AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME", "text-embedding-3-small"
)
model_name = os.getenv("AZURE_OPENAI_EMBEDDINGS_MODEL_NAME", deployment_name)
aoai_embeddings = AzureOpenAIEmbeddings(
model=model_name,
azure_deployment=deployment_name,
)
urls = [
"https://lilianweng.github.io/posts/2024-11-28-reward-hacking/",
"https://lilianweng.github.io/posts/2024-07-07-hallucination/",
"https://lilianweng.github.io/posts/2024-04-12-diffusion-video/",
]
docs = [WebBaseLoader(url).load() for url in urls]
docs_list = [item for sublist in docs for item in sublist]
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=100, chunk_overlap=50
)
doc_splits = text_splitter.split_documents(docs_list)
vectorstore = InMemoryVectorStore.from_documents(
documents=doc_splits, embedding=aoai_embeddings
)
retriever = vectorstore.as_retriever()
retriever_tool = create_retriever_tool(
retriever,
"retrieve_blog_posts",
"Search and return information about Lilian Weng blog posts.", # cspell:disable-line
)
|