File: retriever_tool.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (42 lines) | stat: -rw-r--r-- 1,450 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os

from dotenv import load_dotenv
from langchain_core.tools import create_retriever_tool
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_openai import AzureOpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter

load_dotenv()
deployment_name = os.getenv(
    "AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME", "text-embedding-3-small"
)
model_name = os.getenv("AZURE_OPENAI_EMBEDDINGS_MODEL_NAME", deployment_name)
aoai_embeddings = AzureOpenAIEmbeddings(
    model=model_name,
    azure_deployment=deployment_name,
)

urls = [
    "https://lilianweng.github.io/posts/2024-11-28-reward-hacking/",
    "https://lilianweng.github.io/posts/2024-07-07-hallucination/",
    "https://lilianweng.github.io/posts/2024-04-12-diffusion-video/",
]

docs = [WebBaseLoader(url).load() for url in urls]
docs_list = [item for sublist in docs for item in sublist]

text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
    chunk_size=100, chunk_overlap=50
)
doc_splits = text_splitter.split_documents(docs_list)
vectorstore = InMemoryVectorStore.from_documents(
    documents=doc_splits, embedding=aoai_embeddings
)
retriever = vectorstore.as_retriever()

retriever_tool = create_retriever_tool(
    retriever,
    "retrieve_blog_posts",
    "Search and return information about Lilian Weng blog posts.",  # cspell:disable-line
)