1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
from __future__ import annotations
import os
import json
import time
from dataclasses import dataclass
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, TypedDict
from dotenv import load_dotenv
from langgraph.graph import StateGraph, START, END
from openai import OpenAI, OpenAIError
from azure.ai.agentserver.core import AgentRunContext
from azure.ai.agentserver.core.models import Response, ResponseStreamEvent
from azure.ai.agentserver.langgraph import from_langgraph
from azure.ai.agentserver.langgraph.models import (
LanggraphStateConverter,
)
load_dotenv()
API_KEY = os.environ.get("AZURE_OPENAI_API_KEY")
BASE_URL = os.environ.get("AZURE_OPENAI_ENDPOINT") + "openai/v1"
DEPLOYMENT = os.environ.get("AZURE_AI_MODEL_DEPLOYMENT_NAME") # optional override
DEFAULT_MODEL = "gpt-4.1-mini"
# ---------------------------------------------------------------------------
# Simple in-memory knowledge base (replace with real vector DB in production)
# ---------------------------------------------------------------------------
@dataclass
class KBEntry:
id: str
text: str
tags: List[str]
KNOWLEDGE_BASE: List[KBEntry] = [
KBEntry(
id="doc1",
text="LangGraph enables stateful AI workflows via graphs of nodes.",
tags=["langgraph", "workflow"],
),
KBEntry(
id="doc2",
text="Retrieval augmented generation improves answer grounding by injecting documents.",
tags=["rag", "retrieval", "grounding"],
),
KBEntry(
id="doc3",
text="Streaming responses send partial model outputs for lower latency user experience.",
tags=["streaming", "latency"],
),
]
# ---------------------------------------------------------------------------
# LangGraph State definition
# ---------------------------------------------------------------------------
class RAGState(TypedDict, total=False):
query: str
messages: List[Dict[str, Any]] # simplified message records
needs_retrieval: bool
retrieved: List[Dict[str, Any]] # selected documents
answer_parts: List[str] # incremental answer assembly
final_answer: str # final answer text
_stream_events: List[Any] # buffered upstream model delta events (if any)
stream: bool # whether streaming was requested
# ---------------------------------------------------------------------------
# Utility: naive keyword scoring retrieval
# ---------------------------------------------------------------------------
KEYWORDS = {
"langgraph": ["langgraph", "graph"],
"retrieval": ["retrieval", "rag", "ground"],
"stream": ["stream", "latency", "partial"],
}
def retrieve_docs(question: str, k: int = 2) -> List[Dict[str, Any]]:
scores: List[tuple[float, KBEntry]] = []
lower_q = question.lower()
for entry in KNOWLEDGE_BASE:
score = 0
for token in entry.tags:
if token in lower_q:
score += 2
for kw_group in KEYWORDS.values():
for kw in kw_group:
if kw in lower_q and kw in entry.text.lower():
score += 1
if score > 0:
scores.append((score, entry))
scores.sort(key=lambda t: t[0], reverse=True)
return [{"id": e.id, "text": e.text, "score": s} for s, e in scores[:k]]
# ---------------------------------------------------------------------------
# Custom Converter
# ---------------------------------------------------------------------------
class RAGStateConverter(LanggraphStateConverter):
"""Converter implementing mini RAG logic (non‑streaming only)."""
def get_stream_mode(self, context: AgentRunContext) -> str: # noqa: D401
if context.request.get("stream", False): # type: ignore[attr-defined]
raise NotImplementedError("Streaming not supported in this sample.")
return "values"
def request_to_state(self, context: AgentRunContext) -> Dict[str, Any]: # noqa: D401
req = context.request
user_input = req.get("input")
if isinstance(user_input, list):
for item in user_input:
if isinstance(item, dict) and item.get("type") in (
"message",
"input_text",
):
user_input = item.get("content") or user_input
break
if isinstance(user_input, list):
user_input = " ".join(str(x) for x in user_input)
prompt = str(user_input or "")
messages = []
instructions = req.get("instructions")
if instructions and isinstance(instructions, str):
messages.append({"role": "system", "content": instructions})
messages.append({"role": "user", "content": prompt})
res = {
"query": prompt,
"messages": messages,
"needs_retrieval": False,
"retrieved": [],
"answer_parts": [],
"stream": False,
}
print("initial state:", res)
return res
def state_to_response(
self, state: Dict[str, Any], context: AgentRunContext
) -> Response: # noqa: D401
final_answer = state.get("final_answer") or "(no answer generated)"
print(f"convert state to response, state: {state}")
citations = state.get("retrieved", [])
output_item = {
"type": "message",
"role": "assistant",
"content": [
{
"type": "output_text",
"text": final_answer,
"annotations": [
{
"type": "citation",
"doc_id": c.get("id"),
"score": c.get("score"),
}
for c in citations
],
}
],
}
base = {
"object": "response",
"id": context.response_id,
"agent": context.get_agent_id_object(),
"conversation": context.get_conversation_object(),
"status": "completed",
"created_at": int(time.time()),
"output": [output_item],
}
return Response(**base)
async def state_to_response_stream( # noqa: D401
self,
stream_state: AsyncIterator[Dict[str, Any] | Any],
context: AgentRunContext,
) -> AsyncGenerator[ResponseStreamEvent, None]:
raise NotImplementedError("Streaming not supported in this sample.")
# ---------------------------------------------------------------------------
# Graph Nodes
# ---------------------------------------------------------------------------
def _normalize_query(val: Any) -> str:
"""Extract a lowercase text query from varied structures.
Accepts:
* str
* dict with 'content' or 'text'
* list of mixed items (recursively extracts first textual segment)
Falls back to JSON stringification for unknown structures.
"""
if isinstance(val, str):
return val.strip().lower()
if isinstance(val, dict):
for k in ("content", "text", "value"):
v = val.get(k)
if isinstance(v, str) and v.strip():
return v.strip().lower()
# flatten simple dict string values
parts = [str(v) for v in val.values() if isinstance(v, (str, int, float))]
if parts:
return " ".join(parts).lower()
if isinstance(val, list):
for item in val: # take first meaningful piece
extracted = _normalize_query(item)
if extracted:
return extracted
return ""
try:
return str(val).strip().lower()
except Exception: # noqa: BLE001
return ""
def analyze_intent(state: RAGState) -> RAGState:
raw_q = state.get("query", "")
q = _normalize_query(raw_q)
keywords = ("what", "how", "explain", "retrieval", "langgraph", "stream")
needs = any(kw in q for kw in keywords)
state["needs_retrieval"] = needs
# Also store normalized form for downstream nodes if different
if isinstance(raw_q, (dict, list)):
state["query"] = q
return state
def retrieve_if_needed(state: RAGState) -> RAGState:
if state.get("needs_retrieval"):
state["retrieved"] = retrieve_docs(state.get("query", ""))
return state
def generate_answer(state: RAGState) -> RAGState:
query = state.get("query", "")
retrieved = state.get("retrieved", [])
model_name = DEPLOYMENT or DEFAULT_MODEL
def synthesize_answer() -> tuple[str, List[str]]:
if not retrieved:
text = f"Answer: {query}" if query else "No question provided."
return text, [text]
doc_summaries = "; ".join(r["text"] for r in retrieved)
answer = f"Based on docs: {doc_summaries}\n\nAnswer: {query}"[:4000]
return answer, [answer]
if API_KEY and BASE_URL:
client = OpenAI(api_key=API_KEY, base_url=BASE_URL)
try:
resp = client.responses.create(model=model_name, input=query)
text = getattr(resp, "output_text", None)
if not text:
text = json.dumps(resp.model_dump(mode="json", exclude_none=True))[:500]
state["final_answer"] = text
state["answer_parts"] = [text]
return state
except OpenAIError: # fallback
state["final_answer"], state["answer_parts"] = synthesize_answer()
return state
state["final_answer"], state["answer_parts"] = synthesize_answer()
return state
# ---------------------------------------------------------------------------
# Build the LangGraph
# ---------------------------------------------------------------------------
def _build_graph():
graph = StateGraph(RAGState)
graph.add_node("analyze", analyze_intent)
graph.add_node("retrieve", retrieve_if_needed)
graph.add_node("answer", generate_answer)
graph.add_edge(START, "analyze")
graph.add_edge("analyze", "retrieve")
graph.add_edge("retrieve", "answer")
graph.add_edge("answer", END)
return graph.compile()
# ---------------------------------------------------------------------------
# Entry Point
# ---------------------------------------------------------------------------
if __name__ == "__main__":
graph = _build_graph()
converter = RAGStateConverter()
from_langgraph(graph, converter).run()
|