1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
|
# Azure AI Projects client library for Python
The AI Projects client library (in preview) is part of the Microsoft Foundry SDK, and provides easy access to
resources in your Microsoft Foundry Project. Use it to:
* **Create and run Agents** using methods on methods on the `.agents` client property.
* **Enhance Agents with specialized tools**:
* Agent Memory Search
* Agent-to-Agent (A2A)
* Azure AI Search
* Bing Custom Search
* Bing Grounding
* Browser Automation
* Code Interpreter
* Computer Use
* File Search
* Function Tool
* Image Generation
* MCP with Project Connection
* Microsoft Fabric
* Model Context Protocol (MCP)
* SharePoint
* Web Search
* **Get an OpenAI client** using `.get_openai_client()` method to run Responses, Conversations, Evals and FineTuning operations with your Agent.
* **Manage memory stores** for Agent conversations, using the `.memory_stores` operations.
* **Explore additional evaluation tools** to assess the performance of your generative AI application, using the `.evaluation_rules`,
`.evaluation_taxonomies`, `.evaluators`, `.insights`, and `.schedules` operations.
* **Run Red Team scans** to identify risks associated with your generative AI application, using the ".red_teams" operations.
* **Fine tune** AI Models on your data.
* **Enumerate AI Models** deployed to your Foundry Project using the `.deployments` operations.
* **Enumerate connected Azure resources** in your Foundry project using the `.connections` operations.
* **Upload documents and create Datasets** to reference them using the `.datasets` operations.
* **Create and enumerate Search Indexes** using methods the `.indexes` operations.
The client library uses version `2025-11-15-preview` of the AI Foundry [data plane REST APIs](https://aka.ms/azsdk/azure-ai-projects-v2/api-reference-2025-11-15-preview).
[Product documentation](https://aka.ms/azsdk/azure-ai-projects-v2/product-doc)
| [Samples][samples]
| [API reference](https://aka.ms/azsdk/azure-ai-projects-v2/python/api-reference)
| [Package (PyPI)](https://aka.ms/azsdk/azure-ai-projects-v2/python/package)
| [SDK source code](https://aka.ms/azsdk/azure-ai-projects-v2/python/code)
| [Release history](https://aka.ms/azsdk/azure-ai-projects-v2/python/release-history)
## Reporting issues
To report an issue with the client library, or request additional features, please open a [GitHub issue here](https://github.com/Azure/azure-sdk-for-python/issues). Mention the package name "azure-ai-projects" in the title or content.
## Getting started
### Prerequisite
* Python 3.9 or later.
* An [Azure subscription][azure_sub].
* A [project in Microsoft Foundry](https://learn.microsoft.com/azure/ai-studio/how-to/create-projects).
* The project endpoint URL of the form `https://your-ai-services-account-name.services.ai.azure.com/api/projects/your-project-name`. It can be found in your Microsoft Foundry Project overview page. Below we will assume the environment variable `AZURE_AI_PROJECT_ENDPOINT` was defined to hold this value.
* An Entra ID token for authentication. Your application needs an object that implements the [TokenCredential](https://learn.microsoft.com/python/api/azure-core/azure.core.credentials.tokencredential) interface. Code samples here use [DefaultAzureCredential](https://learn.microsoft.com/python/api/azure-identity/azure.identity.defaultazurecredential). To get that working, you will need:
* An appropriate role assignment. see [Role-based access control in Microsoft Foundry portal](https://learn.microsoft.com/azure/ai-foundry/concepts/rbac-ai-foundry). Role assigned can be done via the "Access Control (IAM)" tab of your Azure AI Project resource in the Azure portal.
* [Azure CLI](https://learn.microsoft.com/cli/azure/install-azure-cli) installed.
* You are logged into your Azure account by running `az login`.
### Install the package
```bash
pip install --pre azure-ai-projects
```
Note that the packages [openai](https://pypi.org/project/openai) and [azure-identity](https://pypi.org/project/azure-identity) also need to be installed if you intend to call `get_openai_client()`:
```bash
pip install openai azure-identity
```
## Key concepts
### Create and authenticate the client with Entra ID
Entra ID is the only authentication method supported at the moment by the client.
To construct a synchronous client as a context manager:
```python
import os
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
with (
DefaultAzureCredential() as credential,
AIProjectClient(endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"], credential=credential) as project_client,
):
```
To construct an asynchronous client, install the additional package [aiohttp](https://pypi.org/project/aiohttp/):
```bash
pip install aiohttp
```
and run:
```python
import os
import asyncio
from azure.ai.projects.aio import AIProjectClient
from azure.identity.aio import DefaultAzureCredential
async with (
DefaultAzureCredential() as credential,
AIProjectClient(endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"], credential=credential) as project_client,
):
```
## Examples
### Performing Responses operations using OpenAI client
Your Microsoft Foundry project may have one or more AI models deployed. These could be OpenAI models, Microsoft models, or models from other providers. Use the code below to get an authenticated [OpenAI](https://github.com/openai/openai-python?tab=readme-ov-file#usage) client from the [openai](https://pypi.org/project/openai/) package, and execute an example multi-turn "Responses" calls.
The code below assumes the environment variable `AZURE_AI_MODEL_DEPLOYMENT_NAME` is defined. It's the deployment name of an AI model in your Foundry Project, As shown in the "Models + endpoints" tab, under the "Name" column.
See the "responses" folder in the [package samples][samples] for additional samples, including streaming responses.
<!-- SNIPPET:sample_responses_basic.responses -->
```python
with project_client.get_openai_client() as openai_client:
response = openai_client.responses.create(
model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
input="What is the size of France in square miles?",
)
print(f"Response output: {response.output_text}")
response = openai_client.responses.create(
model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
input="And what is the capital city?",
previous_response_id=response.id,
)
print(f"Response output: {response.output_text}")
```
<!-- END SNIPPET -->
### Performing Agent operations
The `.agents` property on the `AIProjectsClient` gives you access to all Agent operations. Agents use an extension of the OpenAI Responses protocol, so you will need to get an `OpenAI` client to do Agent operations, as shown in the example below.
The code below assumes environment variable `AZURE_AI_MODEL_DEPLOYMENT_NAME` is defined. It's the deployment name of an AI model in your Foundry Project, as shown in the "Models + endpoints" tab, under the "Name" column.
See the "agents" folder in the [package samples][samples] for an extensive set of samples, including streaming, tool usage and memory store usage.
<!-- SNIPPET:sample_agent_basic.prompt_agent_basic -->
```python
with project_client.get_openai_client() as openai_client:
agent = project_client.agents.create_version(
agent_name="MyAgent",
definition=PromptAgentDefinition(
model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
instructions="You are a helpful assistant that answers general questions",
),
)
print(f"Agent created (id: {agent.id}, name: {agent.name}, version: {agent.version})")
conversation = openai_client.conversations.create(
items=[{"type": "message", "role": "user", "content": "What is the size of France in square miles?"}],
)
print(f"Created conversation with initial user message (id: {conversation.id})")
response = openai_client.responses.create(
conversation=conversation.id,
extra_body={"agent": {"name": agent.name, "type": "agent_reference"}},
input="",
)
print(f"Response output: {response.output_text}")
openai_client.conversations.items.create(
conversation_id=conversation.id,
items=[{"type": "message", "role": "user", "content": "And what is the capital city?"}],
)
print(f"Added a second user message to the conversation")
response = openai_client.responses.create(
conversation=conversation.id,
extra_body={"agent": {"name": agent.name, "type": "agent_reference"}},
input="",
)
print(f"Response output: {response.output_text}")
openai_client.conversations.delete(conversation_id=conversation.id)
print("Conversation deleted")
project_client.agents.delete_version(agent_name=agent.name, agent_version=agent.version)
print("Agent deleted")
```
<!-- END SNIPPET -->
### Using Agent tools
Agents can be enhanced with specialized tools for various capabilities. Tools are organized by their connection requirements:
#### Built-in Tools
These tools work immediately without requiring external connections.
* **Code Interpreter**
Write and run Python code in a sandboxed environment, process files and work with diverse data formats. [OpenAI Documentation](https://platform.openai.com/docs/guides/tools-code-interpreter)
<!-- SNIPPET:sample_agent_code_interpreter.tool_declaration -->
```python
# Load the CSV file to be processed
asset_file_path = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../assets/synthetic_500_quarterly_results.csv")
)
# Upload the CSV file for the code interpreter
file = openai_client.files.create(purpose="assistants", file=open(asset_file_path, "rb"))
tool = CodeInterpreterTool(container=CodeInterpreterToolAuto(file_ids=[file.id]))
```
<!-- END SNIPPET -->
*After calling `responses.create()`, check for generated files in response annotations (type `container_file_citation`) and download them using `openai_client.containers.files.content.retrieve()`.*
See the full sample code in [sample_agent_code_interpreter.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_code_interpreter.py).
* **File Search**
Built-in RAG (Retrieval-Augmented Generation) tool to process and search through documents using vector stores for knowledge retrieval. [OpenAI Documentation](https://platform.openai.com/docs/assistants/tools/file-search)
<!-- SNIPPET:sample_agent_file_search.tool_declaration -->
```python
# Create vector store for file search
vector_store = openai_client.vector_stores.create(name="ProductInfoStore")
print(f"Vector store created (id: {vector_store.id})")
# Load the file to be indexed for search
asset_file_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../assets/product_info.md"))
# Upload file to vector store
file = openai_client.vector_stores.files.upload_and_poll(
vector_store_id=vector_store.id, file=open(asset_file_path, "rb")
)
print(f"File uploaded to vector store (id: {file.id})")
tool = FileSearchTool(vector_store_ids=[vector_store.id])
```
<!-- END SNIPPET -->
See the full sample code in [sample_agent_file_search.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_file_search.py).
* **Image Generation**
Generate images based on text prompts with customizable resolution, quality, and style settings:
<!-- SNIPPET:sample_agent_image_generation.tool_declaration -->
```python
tool = ImageGenTool(quality="low", size="1024x1024")
```
<!-- END SNIPPET -->
After calling `responses.create()`, you can download file using the returned response:
<!-- SNIPPET:sample_agent_image_generation.download_image -->
```python
image_data = [output.result for output in response.output if output.type == "image_generation_call"]
if image_data and image_data[0]:
print("Downloading generated image...")
filename = "microsoft.png"
file_path = os.path.abspath(filename)
with open(file_path, "wb") as f:
f.write(base64.b64decode(image_data[0]))
```
<!-- END SNIPPET -->
See the full sample code in [sample_agent_image_generation.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_image_generation.py).
* **Web Search**
Perform general web searches to retrieve current information from the internet. [OpenAI Documentation](https://platform.openai.com/docs/guides/tools-web-search)
<!-- SNIPPET:sample_agent_web_search.tool_declaration -->
```python
tool = WebSearchPreviewTool(user_location=ApproximateLocation(country="GB", city="London", region="London"))
```
<!-- END SNIPPET -->
See the full sample code in [sample_agent_web_search.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_web_search.py).
* **Computer Use**
Enable agents to interact directly with computer systems for task automation and system operations:
<!-- SNIPPET:sample_agent_computer_use.tool_declaration -->
```python
tool = ComputerUsePreviewTool(display_width=1026, display_height=769, environment="windows")
```
<!-- END SNIPPET -->
*After calling `responses.create()`, process the response in an interaction loop. Handle `computer_call` output items and provide screenshots as `computer_call_output` with `computer_screenshot` type to continue the interaction.*
See the full sample code in [sample_agent_computer_use.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_computer_use.py).
* **Model Context Protocol (MCP)**
Integrate MCP servers to extend agent capabilities with standardized tools and resources. [OpenAI Documentation](https://platform.openai.com/docs/guides/tools-connectors-mcp)
<!-- SNIPPET:sample_agent_mcp.tool_declaration -->
```python
mcp_tool = MCPTool(
server_label="api-specs",
server_url="https://gitmcp.io/Azure/azure-rest-api-specs",
require_approval="always",
)
```
<!-- END SNIPPET -->
*After calling `responses.create()`, check for `mcp_approval_request` items in the response output. Send back `McpApprovalResponse` with your approval decision to allow the agent to continue its work.*
See the full sample code in [sample_agent_mcp.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_mcp.py).
* **Function Tool**
Define custom functions that allow agents to interact with external APIs, databases, or application logic. [OpenAI Documentation](https://platform.openai.com/docs/guides/function-calling)
<!-- SNIPPET:sample_agent_function_tool.tool_declaration -->
```python
tool = FunctionTool(
name="get_horoscope",
parameters={
"type": "object",
"properties": {
"sign": {
"type": "string",
"description": "An astrological sign like Taurus or Aquarius",
},
},
"required": ["sign"],
"additionalProperties": False,
},
description="Get today's horoscope for an astrological sign.",
strict=True,
)
```
<!-- END SNIPPET -->
*After calling `responses.create()`, process `function_call` items from response output, execute your function logic with the provided arguments, and send back `FunctionCallOutput` with the results.*
See the full sample code in [sample_agent_function_tool.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_function_tool.py).
* **Memory Search Tool**
The Memory Store Tool adds Memory to an Agent, allowing the Agent's AI model to search for past information related to the current user prompt.
<!-- SNIPPET:sample_agent_memory_search.memory_search_tool_declaration -->
```python
# Set scope to associate the memories with
# You can also use "{{$userId}}" to take the oid of the request authentication header
scope = "user_123"
tool = MemorySearchTool(
memory_store_name=memory_store.name,
scope=scope,
update_delay=1, # Wait 1 second of inactivity before updating memories
# In a real application, set this to a higher value like 300 (5 minutes, default)
)
```
<!-- END SNIPPET -->
See the full [sample_agent_memory_search.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_memory_search.py) showing how to create an Agent with a memory store, and use it in multiple conversations.
See also samples in the folder [samples\memories](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/ai/azure-ai-projects/samples/memories) showing how to manage memory stores.
#### Connection-Based Tools
These tools require configuring connections in your AI Foundry project and use `project_connection_id`.
* **Azure AI Search**
Integrate with Azure AI Search indexes for powerful knowledge retrieval and semantic search capabilities:
<!-- SNIPPET:sample_agent_ai_search.tool_declaration -->
```python
tool = AzureAISearchAgentTool(
azure_ai_search=AzureAISearchToolResource(
indexes=[
AISearchIndexResource(
project_connection_id=os.environ["AI_SEARCH_PROJECT_CONNECTION_ID"],
index_name=os.environ["AI_SEARCH_INDEX_NAME"],
query_type=AzureAISearchQueryType.SIMPLE,
),
]
)
)
```
<!-- END SNIPPET -->
See the full sample code in [sample_agent_ai_search.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_ai_search.py).
* **Bing Grounding**
Ground agent responses with real-time web search results from Bing to provide up-to-date information:
<!-- SNIPPET:sample_agent_bing_grounding.tool_declaration -->
```python
tool = BingGroundingAgentTool(
bing_grounding=BingGroundingSearchToolParameters(
search_configurations=[
BingGroundingSearchConfiguration(project_connection_id=os.environ["BING_PROJECT_CONNECTION_ID"])
]
)
)
```
<!-- END SNIPPET -->
See the full sample code in [sample_agent_bing_grounding.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_bing_grounding.py).
* **Bing Custom Search**
Use custom-configured Bing search instances for domain-specific or filtered web search results:
<!-- SNIPPET:sample_agent_bing_custom_search.tool_declaration -->
```python
tool = BingCustomSearchAgentTool(
bing_custom_search_preview=BingCustomSearchToolParameters(
search_configurations=[
BingCustomSearchConfiguration(
project_connection_id=os.environ["BING_CUSTOM_SEARCH_PROJECT_CONNECTION_ID"],
instance_name=os.environ["BING_CUSTOM_SEARCH_INSTANCE_NAME"],
)
]
)
)
```
<!-- END SNIPPET -->
See the full sample code in [sample_agent_bing_custom_search.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_bing_custom_search.py).
* **Microsoft Fabric**
Connect to and query Microsoft Fabric:
<!-- SNIPPET:sample_agent_fabric.tool_declaration -->
```python
tool = MicrosoftFabricAgentTool(
fabric_dataagent_preview=FabricDataAgentToolParameters(
project_connections=[ToolProjectConnection(project_connection_id=os.environ["FABRIC_PROJECT_CONNECTION_ID"])]
)
)
```
<!-- END SNIPPET -->
See the full sample code in [sample_agent_fabric.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_fabric.py).
* **SharePoint**
Access and search SharePoint documents, lists, and sites for enterprise knowledge integration:
<!-- SNIPPET:sample_agent_sharepoint.tool_declaration -->
```python
tool = SharepointAgentTool(
sharepoint_grounding_preview=SharepointGroundingToolParameters(
project_connections=[
ToolProjectConnection(project_connection_id=os.environ["SHAREPOINT_PROJECT_CONNECTION_ID"])
]
)
)
```
<!-- END SNIPPET -->
See the full sample code in [sample_agent_sharepoint.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_sharepoint.py).
* **Browser Automation**
Automate browser interactions for web scraping, testing, and interaction with web applications:
<!-- SNIPPET:sample_agent_browser_automation.tool_declaration -->
```python
tool = BrowserAutomationAgentTool(
browser_automation_preview=BrowserAutomationToolParameters(
connection=BrowserAutomationToolConnectionParameters(
project_connection_id=os.environ["BROWSER_AUTOMATION_PROJECT_CONNECTION_ID"],
)
)
)
```
<!-- END SNIPPET -->
See the full sample code in [sample_agent_browser_automation.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_browser_automation.py).
* **MCP with Project Connection**
MCP integration using project-specific connections for accessing connected MCP servers:
<!-- SNIPPET:sample_agent_mcp_with_project_connection.tool_declaration -->
```python
tool = MCPTool(
server_label="api-specs",
server_url="https://api.githubcopilot.com/mcp",
require_approval="always",
project_connection_id=os.environ["MCP_PROJECT_CONNECTION_ID"],
)
```
<!-- END SNIPPET -->
See the full sample code in [sample_agent_mcp_with_project_connection.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_mcp_with_project_connection.py).
* **Agent-to-Agent (A2A)**
Enable multi-agent collaboration where agents can communicate and delegate tasks to other specialized agents:
<!-- SNIPPET:sample_agent_to_agent.tool_declaration -->
```python
tool = A2ATool(
project_connection_id=os.environ["A2A_PROJECT_CONNECTION_ID"],
)
```
<!-- END SNIPPET -->
See the full sample code in [sample_agent_to_agent.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools/sample_agent_to_agent.py).
For complete working examples of all tools, see the [sample tools directory](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/tools).
### Evaluation
Evaluation in Azure AI Project client library provides quantitative, AI-assisted quality and safety metrics to asses performance and Evaluate LLM Models, GenAI Application and Agents. Metrics are defined as evaluators. Built-in or custom evaluators can provide comprehensive evaluation insights.
The code below shows some evaluation operations. Full list of sample can be found under "evaluation" folder in the [package samples][samples]
<!-- SNIPPET:sample_agent_evaluation.agent_evaluation_basic -->
```python
with (
DefaultAzureCredential() as credential,
AIProjectClient(endpoint=endpoint, credential=credential) as project_client,
project_client.get_openai_client() as openai_client,
):
agent = project_client.agents.create_version(
agent_name=os.environ["AZURE_AI_AGENT_NAME"],
definition=PromptAgentDefinition(
model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
instructions="You are a helpful assistant that answers general questions",
),
)
print(f"Agent created (id: {agent.id}, name: {agent.name}, version: {agent.version})")
data_source_config = DataSourceConfigCustom(
type="custom",
item_schema={"type": "object", "properties": {"query": {"type": "string"}}, "required": ["query"]},
include_sample_schema=True,
)
testing_criteria = [
{
"type": "azure_ai_evaluator",
"name": "violence_detection",
"evaluator_name": "builtin.violence",
"data_mapping": {"query": "{{item.query}}", "response": "{{item.response}}"},
}
]
eval_object = openai_client.evals.create(
name="Agent Evaluation",
data_source_config=data_source_config,
testing_criteria=testing_criteria, # type: ignore
)
print(f"Evaluation created (id: {eval_object.id}, name: {eval_object.name})")
data_source = {
"type": "azure_ai_target_completions",
"source": {
"type": "file_content",
"content": [
{"item": {"query": "What is the capital of France?"}},
{"item": {"query": "How do I reverse a string in Python?"}},
],
},
"input_messages": {
"type": "template",
"template": [
{"type": "message", "role": "user", "content": {"type": "input_text", "text": "{{item.query}}"}}
],
},
"target": {
"type": "azure_ai_agent",
"name": agent.name,
"version": agent.version, # Version is optional. Defaults to latest version if not specified
},
}
agent_eval_run: Union[RunCreateResponse, RunRetrieveResponse] = openai_client.evals.runs.create(
eval_id=eval_object.id, name=f"Evaluation Run for Agent {agent.name}", data_source=data_source # type: ignore
)
print(f"Evaluation run created (id: {agent_eval_run.id})")
```
<!-- END SNIPPET -->
### Deployments operations
The code below shows some Deployments operations, which allow you to enumerate the AI models deployed to your AI Foundry Projects. These models can be seen in the "Models + endpoints" tab in your AI Foundry Project. Full samples can be found under the "deployment" folder in the [package samples][samples].
<!-- SNIPPET:sample_deployments.deployments_sample-->
```python
print("List all deployments:")
for deployment in project_client.deployments.list():
print(deployment)
print(f"List all deployments by the model publisher `{model_publisher}`:")
for deployment in project_client.deployments.list(model_publisher=model_publisher):
print(deployment)
print(f"List all deployments of model `{model_name}`:")
for deployment in project_client.deployments.list(model_name=model_name):
print(deployment)
print(f"Get a single deployment named `{model_deployment_name}`:")
deployment = project_client.deployments.get(model_deployment_name)
print(deployment)
# At the moment, the only deployment type supported is ModelDeployment
if isinstance(deployment, ModelDeployment):
print(f"Type: {deployment.type}")
print(f"Name: {deployment.name}")
print(f"Model Name: {deployment.model_name}")
print(f"Model Version: {deployment.model_version}")
print(f"Model Publisher: {deployment.model_publisher}")
print(f"Capabilities: {deployment.capabilities}")
print(f"SKU: {deployment.sku}")
print(f"Connection Name: {deployment.connection_name}")
```
<!-- END SNIPPET -->
### Connections operations
The code below shows some Connection operations, which allow you to enumerate the Azure Resources connected to your AI Foundry Projects. These connections can be seen in the "Management Center", in the "Connected resources" tab in your AI Foundry Project. Full samples can be found under the "connections" folder in the [package samples][samples].
<!-- SNIPPET:sample_connections.connections_sample-->
```python
print("List all connections:")
for connection in project_client.connections.list():
print(connection)
print("List all connections of a particular type:")
for connection in project_client.connections.list(
connection_type=ConnectionType.AZURE_OPEN_AI,
):
print(connection)
print("Get the default connection of a particular type, without its credentials:")
connection = project_client.connections.get_default(connection_type=ConnectionType.AZURE_OPEN_AI)
print(connection)
print("Get the default connection of a particular type, with its credentials:")
connection = project_client.connections.get_default(
connection_type=ConnectionType.AZURE_OPEN_AI, include_credentials=True
)
print(connection)
print(f"Get the connection named `{connection_name}`, without its credentials:")
connection = project_client.connections.get(connection_name)
print(connection)
print(f"Get the connection named `{connection_name}`, with its credentials:")
connection = project_client.connections.get(connection_name, include_credentials=True)
print(connection)
```
<!-- END SNIPPET -->
### Dataset operations
The code below shows some Dataset operations. Full samples can be found under the "datasets"
folder in the [package samples][samples].
<!-- SNIPPET:sample_datasets.datasets_sample-->
```python
print(
f"Upload a single file and create a new Dataset `{dataset_name}`, version `{dataset_version_1}`, to reference the file."
)
dataset: DatasetVersion = project_client.datasets.upload_file(
name=dataset_name,
version=dataset_version_1,
file_path=data_file,
connection_name=connection_name,
)
print(dataset)
print(
f"Upload files in a folder (including sub-folders) and create a new version `{dataset_version_2}` in the same Dataset, to reference the files."
)
dataset = project_client.datasets.upload_folder(
name=dataset_name,
version=dataset_version_2,
folder=data_folder,
connection_name=connection_name,
file_pattern=re.compile(r"\.(txt|csv|md)$", re.IGNORECASE),
)
print(dataset)
print(f"Get an existing Dataset version `{dataset_version_1}`:")
dataset = project_client.datasets.get(name=dataset_name, version=dataset_version_1)
print(dataset)
print(f"Get credentials of an existing Dataset version `{dataset_version_1}`:")
dataset_credential = project_client.datasets.get_credentials(name=dataset_name, version=dataset_version_1)
print(dataset_credential)
print("List latest versions of all Datasets:")
for dataset in project_client.datasets.list():
print(dataset)
print(f"Listing all versions of the Dataset named `{dataset_name}`:")
for dataset in project_client.datasets.list_versions(name=dataset_name):
print(dataset)
print("Delete all Dataset versions created above:")
project_client.datasets.delete(name=dataset_name, version=dataset_version_1)
project_client.datasets.delete(name=dataset_name, version=dataset_version_2)
```
<!-- END SNIPPET -->
### Indexes operations
The code below shows some Indexes operations. Full samples can be found under the "indexes"
folder in the [package samples][samples].
<!-- SNIPPET:sample_indexes.indexes_sample-->
```python
print(f"Create Index `{index_name}` with version `{index_version}`, referencing an existing AI Search resource:")
index = project_client.indexes.create_or_update(
name=index_name,
version=index_version,
index=AzureAISearchIndex(connection_name=ai_search_connection_name, index_name=ai_search_index_name),
)
print(index)
print(f"Get Index `{index_name}` version `{index_version}`:")
index = project_client.indexes.get(name=index_name, version=index_version)
print(index)
print("List latest versions of all Indexes:")
for index in project_client.indexes.list():
print(index)
print(f"Listing all versions of the Index named `{index_name}`:")
for index in project_client.indexes.list_versions(name=index_name):
print(index)
print(f"Delete Index `{index_name}` version `{index_version}`:")
project_client.indexes.delete(name=index_name, version=index_version)
```
<!-- END SNIPPET -->
### Files operations
The code below shows some Files operations using the OpenAI client, which allow you to upload, retrieve, list, and delete files. These operations are useful for working with files that can be used for fine-tuning and other AI model operations. Full samples can be found under the "files" folder in the [package samples][samples].
<!-- SNIPPET:sample_files.files_sample-->
```python
print("Uploading file")
with open(file_path, "rb") as f:
uploaded_file = openai_client.files.create(file=f, purpose="fine-tune")
print(uploaded_file)
print("Waits for the given file to be processed, default timeout is 30 mins")
processed_file = openai_client.files.wait_for_processing(uploaded_file.id)
print(processed_file)
print(f"Retrieving file metadata with ID: {processed_file.id}")
retrieved_file = openai_client.files.retrieve(processed_file.id)
print(retrieved_file)
print(f"Retrieving file content with ID: {processed_file.id}")
file_content = openai_client.files.content(processed_file.id)
print(file_content.content)
print("Listing all files:")
for file in openai_client.files.list():
print(file)
print(f"Deleting file with ID: {processed_file.id}")
deleted_file = openai_client.files.delete(processed_file.id)
print(f"Successfully deleted file: {deleted_file.id}")
```
<!-- END SNIPPET -->
### Fine-tuning operations
The code below shows how to create fine-tuning jobs using the OpenAI client. These operations support various fine-tuning techniques like Supervised Fine-Tuning (SFT), Reinforcement Fine-Tuning (RFT), and Direct Performance Optimization (DPO). Full samples can be found under the "finetuning" folder in the [package samples][samples].
<!-- SNIPPET:sample_finetuning_oss_models_supervised_job.finetuning_oss_model_supervised_job_sample-->
```python
print("Uploading training file...")
with open(training_file_path, "rb") as f:
train_file = openai_client.files.create(file=f, purpose="fine-tune")
print(f"Uploaded training file with ID: {train_file.id}")
print("Uploading validation file...")
with open(validation_file_path, "rb") as f:
validation_file = openai_client.files.create(file=f, purpose="fine-tune")
print(f"Uploaded validation file with ID: {validation_file.id}")
print("Waits for the training and validation files to be processed...")
openai_client.files.wait_for_processing(train_file.id)
openai_client.files.wait_for_processing(validation_file.id)
print("Creating supervised fine-tuning job")
fine_tuning_job = openai_client.fine_tuning.jobs.create(
training_file=train_file.id,
validation_file=validation_file.id,
model=model_name,
method={
"type": "supervised",
"supervised": {"hyperparameters": {"n_epochs": 3, "batch_size": 1, "learning_rate_multiplier": 1.0}},
},
extra_body={
"trainingType": "GlobalStandard"
}, # Recommended approach to set trainingType. Omitting this field may lead to unsupported behavior.
# Preferred trainingtype is GlobalStandard. Note: Global training offers cost savings , but copies data and weights outside the current resource region.
# Learn more - https://azure.microsoft.com/en-us/pricing/details/cognitive-services/openai-service/ and https://azure.microsoft.com/en-us/explore/global-infrastructure/data-residency/
)
print(fine_tuning_job)
```
<!-- END SNIPPET -->
You may also want to create a span for your scenario:
<!-- SNIPPET:sample_agent_basic_with_azure_monitor_tracing.create_span_for_scenario -->
```python
tracer = trace.get_tracer(__name__)
scenario = os.path.basename(__file__)
with tracer.start_as_current_span(scenario):
```
<!-- END SNIPPET -->
See the full sample code in [sample_agent_basic_with_azure_monitor_tracing.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/telemetry/sample_agent_basic_with_azure_monitor_tracing.py).
In addition, you might find it helpful to see the tracing logs in the console. You can achieve this with the following code:
<!-- SNIPPET:sample_agent_basic_with_console_tracing.setup_console_tracing -->
```python
# Setup tracing to console
# Requires opentelemetry-sdk
span_exporter = ConsoleSpanExporter()
tracer_provider = TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(span_exporter))
trace.set_tracer_provider(tracer_provider)
tracer = trace.get_tracer(__name__)
# Enable instrumentation with content tracing
AIProjectInstrumentor().instrument()
```
<!-- END SNIPPET -->
See the full sample code in [sample_agent_basic_with_console_tracing.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/telemetry/sample_agent_basic_with_console_tracing.py).
### Enabling content recording
Content recording controls whether message contents and tool call related details, such as parameters and return values, are captured with the traces. This data may include sensitive user information.
To enable content recording, set the `OTEL_INSTRUMENTATION_GENAI_CAPTURE_MESSAGE_CONTENT` environment variable to `true`. If the environment variable is not set, content recording defaults to `false`.
**Important:** The environment variable only controls content recording for built-in traces. When you use custom tracing decorators on your own functions, all parameters and return values are always traced.
### Disabling automatic instrumentation
The AI Projects client library automatically instruments OpenAI responses and conversations operations through `AiProjectInstrumentation`. You can disable this instrumentation by setting the environment variable `AZURE_TRACING_GEN_AI_INSTRUMENT_RESPONSES_API` to `false`. If the environment variable is not set, the responses and conversations APIs will be instrumented by default.
### Tracing Binary Data
Binary data are images and files sent to the service as input messages. When you enable content recording (`OTEL_INSTRUMENTATION_GENAI_CAPTURE_MESSAGE_CONTENT` set to `true`), by default you only trace file IDs and filenames. To enable full binary data tracing, set `AZURE_TRACING_GEN_AI_INCLUDE_BINARY_DATA` to `true`. In this case:
* **Images**: Image URLs (including data URIs with base64-encoded content) are included
* **Files**: File data is included if sent via the API
**Important:** Binary data can contain sensitive information and may significantly increase trace size. Some trace backends and tracing implementations may have limitations on the maximum size of trace data that can be sent to and/or supported by the backend. Ensure your observability backend and tracing implementation support the expected trace payload sizes when enabling binary data tracing.
### How to trace your own functions
The decorator `trace_function` is provided for tracing your own function calls using OpenTelemetry. By default the function name is used as the name for the span. Alternatively you can provide the name for the span as a parameter to the decorator.
**Note:** The `OTEL_INSTRUMENTATION_GENAI_CAPTURE_MESSAGE_CONTENT` environment variable does not affect custom function tracing. When you use the `trace_function` decorator, all parameters and return values are always traced by default.
This decorator handles various data types for function parameters and return values, and records them as attributes in the trace span. The supported data types include:
* Basic data types: str, int, float, bool
* Collections: list, dict, tuple, set
* Special handling for collections:
* If a collection (list, dict, tuple, set) contains nested collections, the entire collection is converted to a string before being recorded as an attribute.
* Sets and dictionaries are always converted to strings to ensure compatibility with span attributes.
Object types are omitted, and the corresponding parameter is not traced.
The parameters are recorded in attributes `code.function.parameter.<parameter_name>` and the return value is recorder in attribute `code.function.return.value`
#### Adding custom attributes to spans
You can add custom attributes to spans by creating a custom span processor. Here's how to define one:
<!-- SNIPPET:sample_agent_basic_with_console_tracing_custom_attributes.custom_attribute_span_processor -->
```python
class CustomAttributeSpanProcessor(SpanProcessor):
def __init__(self):
pass
def on_start(self, span: Span, parent_context=None):
# Add this attribute to all spans
span.set_attribute("trace_sample.sessionid", "123")
# Add another attribute only to create_thread spans
if span.name == "create_thread":
span.set_attribute("trace_sample.create_thread.context", "abc")
def on_end(self, span: ReadableSpan):
# Clean-up logic can be added here if necessary
pass
```
<!-- END SNIPPET -->
Then add the custom span processor to the global tracer provider:
<!-- SNIPPET:sample_agent_basic_with_console_tracing_custom_attributes.add_custom_span_processor_to_tracer_provider -->
```python
provider = cast(TracerProvider, trace.get_tracer_provider())
provider.add_span_processor(CustomAttributeSpanProcessor())
```
<!-- END SNIPPET -->
See the full sample code in [sample_agent_basic_with_console_tracing_custom_attributes.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/samples/agents/telemetry/sample_agent_basic_with_console_tracing_custom_attributes.py).
### Additional resources
For more information see:
* [Trace AI applications using OpenAI SDK](https://learn.microsoft.com/azure/ai-foundry/how-to/develop/trace-application)
## Troubleshooting
### Exceptions
Client methods that make service calls raise an [HttpResponseError](https://learn.microsoft.com/python/api/azure-core/azure.core.exceptions.httpresponseerror) exception for a non-success HTTP status code response from the service. The exception's `status_code` will hold the HTTP response status code (with `reason` showing the friendly name). The exception's `error.message` contains a detailed message that may be helpful in diagnosing the issue:
```python
from azure.core.exceptions import HttpResponseError
...
try:
result = project_client.connections.list()
except HttpResponseError as e:
print(f"Status code: {e.status_code} ({e.reason})")
print(e.message)
```
For example, when you provide wrong credentials:
```text
Status code: 401 (Unauthorized)
Operation returned an invalid status 'Unauthorized'
```
### Logging
The client uses the standard [Python logging library](https://docs.python.org/3/library/logging.html). The SDK logs HTTP request and response details, which may be useful in troubleshooting. To log to stdout, add the following at the top of your Python script:
```python
import sys
import logging
# Acquire the logger for this client library. Use 'azure' to affect both
# 'azure.core` and `azure.ai.inference' libraries.
logger = logging.getLogger("azure")
# Set the desired logging level. logging.INFO or logging.DEBUG are good options.
logger.setLevel(logging.DEBUG)
# Direct logging output to stdout:
handler = logging.StreamHandler(stream=sys.stdout)
# Or direct logging output to a file:
# handler = logging.FileHandler(filename="sample.log")
logger.addHandler(handler)
# Optional: change the default logging format. Here we add a timestamp.
#formatter = logging.Formatter("%(asctime)s:%(levelname)s:%(name)s:%(message)s")
#handler.setFormatter(formatter)
```
By default logs redact the values of URL query strings, the values of some HTTP request and response headers (including `Authorization` which holds the key or token), and the request and response payloads. To create logs without redaction, add `logging_enable=True` to the client constructor:
```python
project_client = AIProjectClient(
credential=DefaultAzureCredential(),
endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"],
logging_enable=True
)
```
Note that the log level must be set to `logging.DEBUG` (see above code). Logs will be redacted with any other log level.
Be sure to protect non redacted logs to avoid compromising security.
For more information, see [Configure logging in the Azure libraries for Python](https://aka.ms/azsdk/python/logging)
### Reporting issues
To report an issue with the client library, or request additional features, please open a [GitHub issue here](https://github.com/Azure/azure-sdk-for-python/issues). Mention the package name "azure-ai-projects" in the title or content.
## Next steps
Have a look at the [Samples](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/ai/azure-ai-projects/samples) folder, containing fully runnable Python code for synchronous and asynchronous clients.
## Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct][code_of_conduct]. For more information, see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.
<!-- LINKS -->
[samples]: https://aka.ms/azsdk/azure-ai-projects-v2/python/samples/
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[azure_sub]: https://azure.microsoft.com/free/
|