File: sample_finetuning_dpo_job_async.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (91 lines) | stat: -rw-r--r-- 3,575 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# pylint: disable=line-too-long,useless-suppression
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
DESCRIPTION:
    Given an AIProjectClient, this sample demonstrates how to use the asynchronous
   `.fine_tuning_jobs` methods to create DPO (Direct Preference Optimization) fine-tuning jobs.
   Supported OpenAI models: GPT-4o, GPT-4.1, GPT-4.1-mini, GPT-4.1-nano, and GPT-4o-mini.

USAGE:
    python sample_finetuning_dpo_job_async.py

    Before running the sample:

    pip install azure-ai-projects>=2.0.0b1 azure-identity openai python-dotenv aiohttp

    Set these environment variables with your own values:
    1) AZURE_AI_PROJECT_ENDPOINT - Required. The Azure AI Project endpoint, as found in the overview page of your
       Microsoft Foundry portal.
    2) MODEL_NAME - Optional. The base model name to use for fine-tuning. Default to the `gpt-4o` model.
    3) TRAINING_FILE_PATH - Optional. Path to the training data file. Default to the `data` folder.
    4) VALIDATION_FILE_PATH - Optional. Path to the validation data file. Default to the `data` folder.
"""

import asyncio
import os
from dotenv import load_dotenv
from azure.identity.aio import DefaultAzureCredential
from azure.ai.projects.aio import AIProjectClient
from pathlib import Path

load_dotenv()

endpoint = os.environ["AZURE_AI_PROJECT_ENDPOINT"]
model_name = os.environ.get("MODEL_NAME", "gpt-4o-mini")
script_dir = Path(__file__).parent
training_file_path = os.environ.get("TRAINING_FILE_PATH", os.path.join(script_dir, "data", "dpo_training_set.jsonl"))
validation_file_path = os.environ.get(
    "VALIDATION_FILE_PATH", os.path.join(script_dir, "data", "dpo_validation_set.jsonl")
)


async def main():

    async with (
        DefaultAzureCredential() as credential,
        AIProjectClient(endpoint=endpoint, credential=credential) as project_client,
        project_client.get_openai_client() as openai_client,
    ):

        print("Uploading training file...")
        with open(training_file_path, "rb") as f:
            train_file = await openai_client.files.create(file=f, purpose="fine-tune")
        print(f"Uploaded training file with ID: {train_file.id}")

        print("Uploading validation file...")
        with open(validation_file_path, "rb") as f:
            validation_file = await openai_client.files.create(file=f, purpose="fine-tune")
        print(f"Uploaded validation file with ID: {validation_file.id}")

        print("Waits for the training and validation files to be processed...")
        await openai_client.files.wait_for_processing(train_file.id)
        await openai_client.files.wait_for_processing(validation_file.id)

        print("Creating DPO fine-tuning job")
        fine_tuning_job = await openai_client.fine_tuning.jobs.create(
            training_file=train_file.id,
            validation_file=validation_file.id,
            model=model_name,
            method={
                "type": "dpo",
                "dpo": {
                    "hyperparameters": {
                        "n_epochs": 3,
                        "batch_size": 1,
                        "learning_rate_multiplier": 1.0,
                    }
                },
            },
            extra_body={
                "trainingType": "Standard"
            },  # Recommended approach to set trainingType. Omitting this field may lead to unsupported behavior.
        )
        print(fine_tuning_job)


if __name__ == "__main__":
    asyncio.run(main())