File: sample_finetuning_supervised_job.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (220 lines) | stat: -rw-r--r-- 8,819 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# pylint: disable=line-too-long,useless-suppression
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
DESCRIPTION:
    Given an AIProjectClient, this sample demonstrates how to use the synchronous
    `.fine_tuning.jobs` methods to create, get, list, cancel, pause, resume, list events
    and list checkpoints supervised fine-tuning jobs.
    It also shows how to deploy the fine-tuned model using Azure Cognitive Services Management
    Client and perform inference on the deployed model.
    Supported OpenAI models: GPT 4o, 4o-mini, 4.1, 4.1-mini

USAGE:
    python sample_finetuning_supervised_job.py

    Before running the sample:

    pip install azure-ai-projects>=2.0.0b1 azure-identity openai python-dotenv azure-mgmt-cognitiveservices

    Set these environment variables with your own values:
    1) AZURE_AI_PROJECT_ENDPOINT - Required. The Azure AI Project endpoint, as found in the overview page of your
       Microsoft Foundry portal.
    2) MODEL_NAME - Optional. The base model name to use for fine-tuning. Default to the `gpt-4.1` model.
    3) TRAINING_FILE_PATH - Optional. Path to the training data file. Default to the `data` folder.
    4) VALIDATION_FILE_PATH - Optional. Path to the validation data file. Default to the `data` folder.
    5) AZURE_AI_PROJECTS_AZURE_SUBSCRIPTION_ID - Required. Your Azure subscription ID for fine-tuned model deployment and inferencing.
    6) AZURE_AI_PROJECTS_AZURE_RESOURCE_GROUP - Required. The resource group name containing your Azure OpenAI resource.
    7) AZURE_AI_PROJECTS_AZURE_AOAI_ACCOUNT - Required. The name of your Azure OpenAI account for fine-tuned model deployment and inferencing.
"""

import os
import time
from dotenv import load_dotenv
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
from azure.mgmt.cognitiveservices import CognitiveServicesManagementClient
from azure.mgmt.cognitiveservices.models import Deployment, DeploymentProperties, DeploymentModel, Sku
from pathlib import Path

load_dotenv()

# For fine-tuning
endpoint = os.environ["AZURE_AI_PROJECT_ENDPOINT"]
model_name = os.environ.get("MODEL_NAME", "gpt-4.1")
script_dir = Path(__file__).parent
training_file_path = os.environ.get("TRAINING_FILE_PATH", os.path.join(script_dir, "data", "sft_training_set.jsonl"))
validation_file_path = os.environ.get(
    "VALIDATION_FILE_PATH", os.path.join(script_dir, "data", "sft_validation_set.jsonl")
)

# For Deployment and inferencing on model
subscription_id = os.environ["AZURE_AI_PROJECTS_AZURE_SUBSCRIPTION_ID"]
resource_group = os.environ["AZURE_AI_PROJECTS_AZURE_RESOURCE_GROUP"]
account_name = os.environ["AZURE_AI_PROJECTS_AZURE_AOAI_ACCOUNT"]


def pause_job(openai_client, job_id):
    """Pause a fine-tuning job.

    Job needs to be in running state in order to pause.
    """
    print(f"Pausing fine-tuning job with ID: {job_id}")
    paused_job = openai_client.fine_tuning.jobs.pause(job_id)
    print(paused_job)


def resume_job(openai_client, job_id):
    """Resume a fine-tuning job.

    Job needs to be in paused state in order to resume.
    """
    print(f"Resuming fine-tuning job with ID: {job_id}")
    resumed_job = openai_client.fine_tuning.jobs.resume(job_id)
    print(resumed_job)


def deploy_model(openai_client, credential, job_id):
    """Deploy the fine-tuned model.

    Deploy model using Azure Management SDK (azure-mgmt-cognitiveservices).
    Note: Deployment can only be started after the fine-tuning job completes successfully.
    """
    print(f"Retrieving fine-tuning job with ID: {job_id}")
    fine_tuned_model_name = openai_client.fine_tuning.jobs.retrieve(job_id).fine_tuned_model
    deployment_name = "gpt-4-1-fine-tuned"

    with CognitiveServicesManagementClient(credential=credential, subscription_id=subscription_id) as cogsvc_client:

        deployment_model = DeploymentModel(format="OpenAI", name=fine_tuned_model_name, version="1")

        deployment_properties = DeploymentProperties(model=deployment_model)

        deployment_sku = Sku(name="GlobalStandard", capacity=100)

        deployment_config = Deployment(properties=deployment_properties, sku=deployment_sku)

        print(f"Deploying fine-tuned model: {fine_tuned_model_name} with deployment name: {deployment_name}")
        deployment = cogsvc_client.deployments.begin_create_or_update(
            resource_group_name=resource_group,
            account_name=account_name,
            deployment_name=deployment_name,
            deployment=deployment_config,
        )

        while deployment.status() not in ["Succeeded", "Failed"]:
            time.sleep(30)
            print(f"Deployment status: {deployment.status()}")

    print(f"Model deployment completed: {deployment_name}")
    return deployment_name


def infer(openai_client, deployment_name):
    """Perform inference on the deployed fine-tuned model."""
    print(f"Testing fine-tuned model via deployment: {deployment_name}")

    response = openai_client.responses.create(
        model=deployment_name, input=[{"role": "user", "content": "Who invented the telephone?"}]
    )
    print(f"Model response: {response.output_text}")


def list_jobs(openai_client):
    """List fine-tuning jobs."""
    print("Listing all fine-tuning jobs:")
    for job in openai_client.fine_tuning.jobs.list():
        print(job)


def list_events(openai_client, job_id):
    """List events of a fine-tuning job."""
    print(f"Listing events of fine-tuning job: {job_id}")
    for event in openai_client.fine_tuning.jobs.list_events(job_id):
        print(event)


def list_checkpoints(openai_client, job_id):
    """List checkpoints of a fine-tuning job.

    Note that to retrieve the checkpoints, job needs to be in terminal state.
    """
    print(f"Listing checkpoints of fine-tuning job: {job_id}")
    for checkpoint in openai_client.fine_tuning.jobs.checkpoints.list(job_id):
        print(checkpoint)


def cancel_job(openai_client, job_id):
    """Cancel a fine-tuning job."""
    print(f"Cancelling fine-tuning job with ID: {job_id}")
    cancelled_job = openai_client.fine_tuning.jobs.cancel(job_id)
    print(f"Successfully cancelled fine-tuning job: {cancelled_job.id}, Status: {cancelled_job.status}")


def retrieve_job(openai_client, job_id):
    """Retrieve a fine-tuning job."""
    print(f"Getting fine-tuning job with ID: {job_id}")
    retrieved_job = openai_client.fine_tuning.jobs.retrieve(job_id)
    print(retrieved_job)


def main() -> None:
    with (
        DefaultAzureCredential() as credential,
        AIProjectClient(endpoint=endpoint, credential=credential) as project_client,
        project_client.get_openai_client() as openai_client,
    ):
        print("Uploading training file...")
        with open(training_file_path, "rb") as f:
            train_file = openai_client.files.create(file=f, purpose="fine-tune")
        print(f"Uploaded training file with ID: {train_file.id}")

        print("Uploading validation file...")
        with open(validation_file_path, "rb") as f:
            validation_file = openai_client.files.create(file=f, purpose="fine-tune")
        print(f"Uploaded validation file with ID: {validation_file.id}")

        print("Waits for the training and validation files to be processed...")
        openai_client.files.wait_for_processing(train_file.id)
        openai_client.files.wait_for_processing(validation_file.id)

        print("Creating supervised fine-tuning job")
        fine_tuning_job = openai_client.fine_tuning.jobs.create(
            training_file=train_file.id,
            validation_file=validation_file.id,
            model=model_name,
            method={
                "type": "supervised",
                "supervised": {"hyperparameters": {"n_epochs": 3, "batch_size": 1, "learning_rate_multiplier": 1.0}},
            },
            extra_body={
                "trainingType": "Standard"
            },  # Recommended approach to set trainingType. Omitting this field may lead to unsupported behavior.
        )
        print(fine_tuning_job)

        # Uncomment any of the following methods to test specific functionalities:
        # retrieve_job(openai_client, fine_tuning_job.id)

        # list_jobs(openai_client)

        # pause_job(openai_client, fine_tuning_job.id)

        # resume_job(openai_client, fine_tuning_job.id)

        # list_events(openai_client, fine_tuning_job.id)

        # list_checkpoints(openai_client, fine_tuning_job.id)

        # cancel_job(openai_client, fine_tuning_job.id)

        # deployment_name = deploy_model(openai_client, credential, fine_tuning_job.id)

        # infer(openai_client, deployment_name)


if __name__ == "__main__":
    main()