1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
|
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""
DESCRIPTION:
This sample demonstrates how to run a basic responses operation
using the asynchronous AIProjectClient and AsyncOpenAI clients.
See also https://platform.openai.com/docs/api-reference/responses/create?lang=python
USAGE:
python sample_responses_basic_async.py
Before running the sample:
pip install "azure-ai-projects>=2.0.0b1" azure-identity aiohttp python-dotenv
Set these environment variables with your own values:
1) AZURE_AI_PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the Overview
page of your Microsoft Foundry portal.
2) AZURE_AI_MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in
the "Models + endpoints" tab in your Microsoft Foundry project.
"""
import asyncio
import os
from dotenv import load_dotenv
from azure.identity.aio import DefaultAzureCredential
from azure.ai.projects.aio import AIProjectClient
load_dotenv()
endpoint = os.environ["AZURE_AI_PROJECT_ENDPOINT"]
async def main() -> None:
async with (
DefaultAzureCredential() as credential,
AIProjectClient(endpoint=endpoint, credential=credential) as project_client,
project_client.get_openai_client() as openai_client,
):
response = await openai_client.responses.create(
model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
input="What is the size of France in square miles?",
)
print(f"Response output: {response.output_text}")
response = await openai_client.responses.create(
model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
input="And what is the capital city?",
previous_response_id=response.id,
)
print(f"Response output: {response.output_text}")
if __name__ == "__main__":
asyncio.run(main())
|