File: test_live_realtime_service.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (1295 lines) | stat: -rw-r--r-- 62,222 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
# pylint: disable=line-too-long,useless-suppression,too-many-lines
# tests/test_voicelive_realtime_async.py
# LIVE async tests using azure.ai.voicelive.aio (no mocks, no custom client)
import base64
import asyncio
import json

from pathlib import Path
from typing import Callable, Iterator, Literal, Mapping, Union, Any, Type
import pytest

pytest.importorskip(
    "aiohttp",
    reason="Skipping aio tests: aiohttp not installed (whl_no_aio).",
)

from azure.core.credentials import AzureKeyCredential
from azure.ai.voicelive.aio import connect
from azure.ai.voicelive.models import (
    Animation,
    AnimationOutputType,
    AudioEchoCancellation,
    AudioInputTranscriptionOptions,
    AudioNoiseReduction,
    AudioTimestampType,
    AzureSemanticDetection,
    AzureSemanticDetectionEn,
    AzureSemanticVad,
    AzureSemanticVadMultilingual,
    AzureStandardVoice,
    ContentPart,
    FunctionCallOutputItem,
    FunctionTool,
    InputAudioFormat,
    ItemType,
    Modality,
    RequestSession,
    ResponseFunctionCallItem,
    ResponseMessageItem,
    ServerEventConversationItemCreated,
    ServerEventConversationItemRetrieved,
    ServerEventConversationItemTruncated,
    ServerEventResponseCreated,
    ServerEventResponseFunctionCallArgumentsDelta,
    ServerEventResponseFunctionCallArgumentsDone,
    ServerEventResponseOutputItemDone,
    ServerEventType,
    ServerVad,
    ToolChoiceFunctionSelection,
    ToolChoiceLiteral,
    TurnDetection,
)

from devtools_testutils import AzureRecordedTestCase, recorded_by_proxy
from .voicelive_preparer import VoiceLivePreparer


def _load_audio_b64(path: Path) -> str:
    with open(path, "rb") as f:
        audio_bytes = f.read()
    return base64.b64encode(audio_bytes).decode("utf-8")


def _get_trailing_silence_bytes(sample_rate: int = 24000, duration_s: float = 2.0) -> bytes:
    num_samples = int(sample_rate * duration_s)
    return b"\x00\x00" * num_samples  # 16-bit PCM silence


def _iter_audio_b64_chunks(path: Path, chunk_bytes: int = 10_240) -> Iterator[str]:
    """Yield base64-encoded chunks of the file, ~10 KB of raw bytes per chunk."""
    with open(path, "rb") as f:
        while True:
            chunk = f.read(chunk_bytes)
            if not chunk:
                break
            yield base64.b64encode(chunk).decode("utf-8")


def _get_speech_recognition_setting(model: str) -> AudioInputTranscriptionOptions:
    speech_recognition_model = (
        "whisper-1" if model.startswith(("gpt-4o-realtime", "gpt-4o-mini-realtime")) else "azure-speech"
    )
    return AudioInputTranscriptionOptions(model=speech_recognition_model, language="en-US")


async def _wait_for_event(conn, wanted_types: set, timeout_s: float = 10.0):
    """Wait until we receive any event whose type is in wanted_types."""

    async def _next():
        while True:
            evt = await conn.recv()
            if evt.type in wanted_types:
                return evt

    return await asyncio.wait_for(_next(), timeout=timeout_s)


async def _wait_for_match(
    conn,
    predicate: Callable[[Any], bool],
    timeout_s: float = 10.0,
):
    """Wait until we receive an event that satisfies the given predicate."""

    async def _next():
        while True:
            evt = await conn.recv()
            if predicate(evt):
                return evt

    return await asyncio.wait_for(_next(), timeout=timeout_s)


async def _collect_event(conn, *, event_type: ServerEventType, timeout: int = 10):
    events = 0
    audio_bytes = 0
    loop = asyncio.get_event_loop()
    end = loop.time() + timeout

    while True:
        remaining = end - loop.time()
        if remaining <= 0:
            break

        try:
            evt = await asyncio.wait_for(conn.recv(), timeout=remaining)
        except asyncio.TimeoutError:
            break  # no event arrived before the overall timeout

        if evt.type == event_type:
            events += 1

        if evt.type == ServerEventType.RESPONSE_AUDIO_DELTA:
            audio_bytes += len(evt.delta)

    return events, audio_bytes


async def _collect_audio_trans_outputs(conn, duration_s: float) -> int:
    trans_events = 0
    audio_events = 0
    try:
        async with asyncio.timeout(duration_s):
            while True:
                event = await conn.recv()  # no per-recv timeout needed
                if (
                    event.type == ServerEventType.RESPONSE_AUDIO_DELTA
                    or event.type == ServerEventType.RESPONSE_AUDIO_DONE
                ):
                    audio_events += 1

                if (
                    event.type == ServerEventType.RESPONSE_AUDIO_TRANSCRIPT_DELTA
                    or event.type == ServerEventType.RESPONSE_AUDIO_TRANSCRIPT_DONE
                ):
                    trans_events += 1

    except TimeoutError:
        pass
    return audio_events, trans_events


class TestRealtimeService(AzureRecordedTestCase):

    @VoiceLivePreparer()
    @recorded_by_proxy
    def smoke_test(self, **kwargs):
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        assert voicelive_openai_endpoint
        assert voicelive_openai_api_key

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4o-realtime-preview", "gpt-4.1", "phi4-mm-realtime", "phi4-mini"])
    async def test_realtime_service(self, test_data_dir: Path, model: str, **kwargs):
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        file = test_data_dir / "4.wav"
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            # text-only session
            session = RequestSession(modalities=[Modality.TEXT, Modality.AUDIO])
            await conn.session.update(session=session)

            # wait session.created
            await _wait_for_event(conn, {ServerEventType.SESSION_CREATED}, 15)
            await _wait_for_event(conn, {ServerEventType.SESSION_UPDATED}, 15)

            await conn.input_audio_buffer.append(audio=_load_audio_b64(file))

            # Observe that we do NOT get a response.* automatically; we should at least see input_* events
            evt = await _wait_for_event(
                conn,
                {
                    ServerEventType.INPUT_AUDIO_BUFFER_COMMITTED,
                    ServerEventType.INPUT_AUDIO_BUFFER_SPEECH_STARTED,
                    ServerEventType.INPUT_AUDIO_BUFFER_SPEECH_STOPPED,
                },
                20,
            )

            assert evt.type in {
                ServerEventType.INPUT_AUDIO_BUFFER_COMMITTED,
                ServerEventType.INPUT_AUDIO_BUFFER_SPEECH_STARTED,
                ServerEventType.INPUT_AUDIO_BUFFER_SPEECH_STOPPED,
            }

            # We should see one of the audio response events eventually
            audio_delta_evt = await _wait_for_event(
                conn,
                {
                    ServerEventType.RESPONSE_AUDIO_DELTA,
                },
                30,
            )

            assert audio_delta_evt.type in {ServerEventType.RESPONSE_AUDIO_DELTA}
            assert audio_delta_evt.delta is not None and len(audio_delta_evt.delta) > 0

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4o-realtime-preview", "gpt-4.1"])
    async def test_realtime_service_with_audio_enhancements(self, test_data_dir: Path, model: str, **kwargs):
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        file = test_data_dir / "4.wav"
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            # text-only session
            session = RequestSession(
                input_audio_noise_reduction=AudioNoiseReduction(type="azure_deep_noise_suppression"),
                input_audio_echo_cancellation=AudioEchoCancellation(),
            )
            await conn.session.update(session=session)

            # wait session.created
            await _wait_for_event(conn, {ServerEventType.SESSION_UPDATED}, 15)

            await conn.input_audio_buffer.append(audio=_load_audio_b64(file))
            audio_segments, _ = await _collect_event(conn, event_type=ServerEventType.INPUT_AUDIO_BUFFER_SPEECH_STARTED)
            assert audio_segments == 5

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize(
        ("model", "server_sd_conf"),
        [
            pytest.param(
                "gpt-4o-realtime-preview",
                {"type": "azure_semantic_vad", "speech_duration_assistant_speaking_ms": 800},
                id="gpt-4o-realtime",
            ),
            pytest.param(
                "gpt-4o",
                {"type": "azure_semantic_vad", "speech_duration_assistant_speaking_ms": 800},
                id="cascaded-realtime",
            ),
        ],
    )
    async def test_realtime_service_with_turn_detection_long_tts_vad_duration(
        self, test_data_dir: Path, model: str, server_sd_conf: dict, **kwargs
    ):
        file = test_data_dir / "4.wav"
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            turn_detection = None if not server_sd_conf else server_sd_conf
            session = RequestSession(turn_detection=turn_detection)

            await conn.session.update(session=session)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(file))
            audio_delta_evt = await _wait_for_event(
                conn,
                {
                    ServerEventType.RESPONSE_AUDIO_DELTA,
                },
                30,
            )

            assert audio_delta_evt.type in {ServerEventType.RESPONSE_AUDIO_DELTA}
            assert audio_delta_evt.delta is not None and len(audio_delta_evt.delta) > 0

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize(
        ("model", "semantic_vad_params"),
        [
            pytest.param("gpt-4o-realtime-preview", {}, id="gpt-4o-realtime"),
            # pytest.param(
            #     "gpt-4o-realtime-preview",
            #     {"window_size": 4, "distinct_ci_phones": 2, "require_vowel": True, "remove_filler_words": True},
            #     id="gpt-4o-realtime-remove-filler-words",
            # ),
            pytest.param("gpt-4o", {}, id="cascaded-realtime"),
            pytest.param("gpt-4o", {"speech_duration_ms": 200}, id="cascaded-realtime"),
            pytest.param("gpt-4o", {"languages": ["en", "es"]}, id="cascaded-realtime"),
        ],
    )
    async def test_realtime_service_with_turn_detection_multilingual(
        self, test_data_dir: Path, model: str, semantic_vad_params: dict, **kwargs
    ):
        file = test_data_dir / "4.wav"
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(turn_detection=AzureSemanticVadMultilingual(**semantic_vad_params))
            await conn.session.update(session=session)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(file))
            await conn.input_audio_buffer.append(audio=_get_trailing_silence_bytes())

            audio_segments, audio_bytes = await _collect_event(
                conn, event_type=ServerEventType.INPUT_AUDIO_BUFFER_SPEECH_STARTED
            )
            assert audio_segments == 5
            assert audio_bytes > 0

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize(
        "test_audio_file",
        [
            "filler1_end_24kHz.wav",
            "filler2_end_24kHz.wav",
        ],
    )
    async def test_realtime_service_with_filler_word_removal(self, test_data_dir: Path, test_audio_file: str, **kwargs):
        model = "gpt-4o-realtime-preview"
        file = test_data_dir / test_audio_file
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            turn_detection = AzureSemanticVad(remove_filler_words=True)
            session = RequestSession(modalities=[Modality.TEXT, Modality.AUDIO], turn_detection=turn_detection)

            await conn.session.update(session=session)
            evt = await _wait_for_event(conn, {ServerEventType.SESSION_UPDATED}, 10)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(file))
            audio_segments, _ = await _collect_event(conn, event_type=ServerEventType.INPUT_AUDIO_BUFFER_SPEECH_STARTED)
            assert audio_segments == 1

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize(
        "test_audio_file",
        [
            "filler1_end_24kHz.wav",
            # "filler2_end_24kHz.wav",
            # "filler3_end_24kHz.wav",
        ],
    )
    async def test_realtime_service_with_filler_word_removal_multilingual(
        self, test_data_dir: Path, test_audio_file: str, **kwargs
    ):
        model = "gpt-4o-realtime-preview"
        file = test_data_dir / test_audio_file
        server_sd_conf = {
            "remove_filler_words": True,
        }

        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(
                turn_detection=AzureSemanticVadMultilingual(**server_sd_conf),
                input_audio_transcription=_get_speech_recognition_setting(model=model),
            )
            await conn.session.update(session=session)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(file))
            await conn.input_audio_buffer.append(audio=_get_trailing_silence_bytes())
            audio_segments, _ = await _collect_event(conn, event_type=ServerEventType.INPUT_AUDIO_BUFFER_SPEECH_STARTED)
            assert audio_segments == 1

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4o-realtime", "gpt-4o"])
    async def test_realtime_service_tool_call(self, test_data_dir: Path, model: str, **kwargs):
        audio_file = test_data_dir / "one-sentence.wav"
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            tools = [
                FunctionTool(
                    name="assess_pronunciation", description="Assess pronunciation of the last user input speech"
                )
            ]
            session = RequestSession(
                instructions="You are a teacher to a student who is learning English. You are talking with student with speech. For each user input speech, you need to call the assess_pronunciation function to assess the pronunciation of the last user input speech, and then give feedback to the student.",
                tools=tools,
                tool_choice=ToolChoiceLiteral.AUTO,
                input_audio_transcription=_get_speech_recognition_setting(model=model),
                voice=AzureStandardVoice(name="en-US-AriaNeural"),
            )

            await conn.session.update(session=session)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(audio_file))
            timeout_s = 10
            conversation_created_events = []
            function_call_results = []
            start = asyncio.get_event_loop().time()
            while True:
                if asyncio.get_event_loop().time() - start > timeout_s:
                    break

                try:
                    event = await asyncio.wait_for(conn.recv(), timeout=2)  # short per-recv timeout
                except asyncio.TimeoutError:
                    continue

                if (
                    event.type == ServerEventType.CONVERSATION_ITEM_CREATED
                    and event.item.type == ItemType.FUNCTION_CALL
                ):
                    conversation_created_events.append(event)

                if event.type == ServerEventType.RESPONSE_FUNCTION_CALL_ARGUMENTS_DELTA:
                    function_call_results.append(event)

            assert len(function_call_results) > 0

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4o-realtime-preview-2025-06-03", "gpt-4o", "gpt-5-chat"])
    async def test_realtime_service_tool_choice(self, test_data_dir: Path, model: str, **kwargs):
        if "realtime" in model:
            pytest.skip("Tool choice is not supported in realtime models yet")
        audio_file = test_data_dir / "ask_weather.wav"
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            tools = [
                FunctionTool(
                    name="get_weather",
                    description="Get the weather for a given location.",
                    parameters={
                        "type": "object",
                        "properties": {
                            "location": {
                                "type": "string",
                                "description": "The location to get the weather for.",
                            },
                        },
                        "required": ["location"],
                    },
                ),
                FunctionTool(
                    name="get_time",
                    description="Get the current time in a given location.",
                    parameters={
                        "type": "object",
                        "properties": {
                            "location": {
                                "type": "string",
                                "description": "The location to get the current time for.",
                            },
                        },
                        "required": ["location"],
                    },
                ),
            ]
            tool_choice = ToolChoiceFunctionSelection(name="get_time")
            session = RequestSession(
                instructions="You are a helpful assistant with tools.",
                tools=tools,
                tool_choice=tool_choice,
                input_audio_transcription=AudioInputTranscriptionOptions(model="whisper-1"),
                turn_detection=ServerVad(threshold=0.5, prefix_padding_ms=300, silence_duration_ms=200),
            )
            await conn.session.update(session=session)
            await _wait_for_event(conn, {ServerEventType.SESSION_UPDATED})
            await conn.input_audio_buffer.append(audio=_load_audio_b64(audio_file))
            await conn.input_audio_buffer.append(audio=_get_trailing_silence_bytes())

            timeout_s = 10
            start = asyncio.get_event_loop().time()
            conversation_created = None
            while True:
                if asyncio.get_event_loop().time() - start > timeout_s:
                    break

                try:
                    event = await asyncio.wait_for(conn.recv(), timeout=2)  # short per-recv timeout
                except asyncio.TimeoutError:
                    continue

                if (
                    event.type == ServerEventType.CONVERSATION_ITEM_CREATED
                    and event.item.type == ItemType.FUNCTION_CALL
                ):
                    conversation_created = event
                    break

            assert isinstance(conversation_created, ServerEventConversationItemCreated)
            assert isinstance(conversation_created.item, ResponseFunctionCallItem)
            assert conversation_created.item.type == ItemType.FUNCTION_CALL
            assert conversation_created.item.name == "get_time"

            function_delta = await _wait_for_event(conn, {ServerEventType.RESPONSE_FUNCTION_CALL_ARGUMENTS_DELTA})
            assert isinstance(function_delta, ServerEventResponseFunctionCallArgumentsDelta)

            function_done = await _wait_for_event(conn, {ServerEventType.RESPONSE_FUNCTION_CALL_ARGUMENTS_DONE})
            assert isinstance(function_done, ServerEventResponseFunctionCallArgumentsDone)
            assert function_done.arguments in ['{"location":"北京"}', '{"location":"Beijing"}']
            assert function_done.name == "get_time"

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4o-realtime", "gpt-4.1", "gpt-5", "phi4-mm-realtime"])
    async def test_realtime_service_tool_call_parameter(self, test_data_dir: Path, model: str, **kwargs):
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")

        def get_weather(arguments: Union[str, Mapping[str, Any]]) -> str:
            return json.dumps({"location": "Beijing", "weather": "sunny", "temp_c": 25})

        if "realtime" in model:
            pytest.skip("Tool choice is not supported in realtime models yet")
        audio_file = test_data_dir / "ask_weather.wav"
        tools = [
            FunctionTool(
                name="get_weather",
                description="Retrieve the weather of given location.",
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The location to get the weather for.",
                        },
                    },
                    "required": ["location"],
                },
            )
        ]
        instructions = "You are a helpful assistant with tools."
        if model != "phi4-mm-realtime":
            instructions += " If you are asked about the weather, please respond with `I will get the weather for you. Please wait a moment.` and then call the get_weather function with the location parameter."
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(
                instructions=instructions,
                tools=tools,
                tool_choice=ToolChoiceLiteral.AUTO,
                input_audio_transcription=AudioInputTranscriptionOptions(model="whisper-1"),
                turn_detection=ServerVad(threshold=0.5, prefix_padding_ms=300, silence_duration_ms=200),
            )
            await conn.session.update(session=session)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(audio_file))
            await conn.input_audio_buffer.append(audio=_get_trailing_silence_bytes())

            response_created = await _wait_for_event(conn, {ServerEventType.RESPONSE_CREATED})
            isinstance(response_created, ServerEventResponseCreated)

            conversation_created = await _wait_for_match(
                conn,
                lambda e: e.type == ServerEventType.CONVERSATION_ITEM_CREATED and e.item.type == ItemType.FUNCTION_CALL,
            )
            assert isinstance(conversation_created, ServerEventConversationItemCreated)
            assert isinstance(conversation_created.item, ResponseFunctionCallItem)
            assert conversation_created.item.type == ItemType.FUNCTION_CALL
            assert conversation_created.item.name == "get_weather"
            call_id = conversation_created.item.call_id
            previous_item_id = conversation_created.item.id

            function_done = await _wait_for_event(conn, {ServerEventType.RESPONSE_FUNCTION_CALL_ARGUMENTS_DONE})
            assert isinstance(function_done, ServerEventResponseFunctionCallArgumentsDone)
            assert function_done.call_id == call_id
            assert function_done.arguments in ['{"location":"北京"}', '{"location":"Beijing"}']
            await _wait_for_event(conn, {ServerEventType.RESPONSE_DONE})

            tool_output = get_weather(function_done.arguments)
            await conn.conversation.item.create(
                previous_item_id=previous_item_id, item=FunctionCallOutputItem(call_id=call_id, output=tool_output)
            )
            await conn.response.create()

            response = await _wait_for_match(
                conn, lambda e: e.type == ServerEventType.RESPONSE_OUTPUT_ITEM_DONE and e.item.id != previous_item_id
            )
            transcript = response.item.content[0].transcript
            assert "æ™´" in transcript or "sunny" in transcript
            assert "25" in transcript

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4o", "gpt-4o-realtime"])
    async def test_realtime_service_live_session_update(self, test_data_dir: Path, model: str, **kwargs):
        audio_file = test_data_dir / "ask_weather.wav"
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(
                instructions="You are a helpful assistant that can answer questions.",
                voice=AzureStandardVoice(name="en-US-AvaMultilingualNeural"),
                input_audio_transcription=AudioInputTranscriptionOptions(model="whisper-1"),
                turn_detection=ServerVad(threshold=0.5, prefix_padding_ms=300, silence_duration_ms=200),
            )
            await conn.session.update(session=session)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(audio_file))
            await conn.input_audio_buffer.append(audio=_get_trailing_silence_bytes())
            transcripts, audio_bytes = await _collect_event(
                conn, event_type=ServerEventType.RESPONSE_AUDIO_TRANSCRIPT_DONE, timeout=15
            )
            assert transcripts == 1
            assert audio_bytes > 50 * 1000

            tools = [
                FunctionTool(
                    name="get_weather",
                    description="Get the weather for a given location.",
                    parameters={
                        "type": "object",
                        "properties": {
                            "location": {
                                "type": "string",
                                "description": "The location to get the weather for.",
                            },
                        },
                        "required": ["location"],
                    },
                )
            ]
            new_session = RequestSession(
                instructions="You are a helpful assistant with tools.",
                voice=AzureStandardVoice(name="en-US-AvaMultilingualNeural"),
                input_audio_transcription=AudioInputTranscriptionOptions(model="whisper-1"),
                tools=tools,
                tool_choice=ToolChoiceLiteral.AUTO,
                turn_detection=ServerVad(threshold=0.5, prefix_padding_ms=300, silence_duration_ms=200),
            )
            await conn.session.update(session=new_session)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(audio_file))
            await conn.input_audio_buffer.append(audio=_get_trailing_silence_bytes())

            function_call_output = await _wait_for_event(conn, {ServerEventType.RESPONSE_FUNCTION_CALL_ARGUMENTS_DONE})
            assert isinstance(function_call_output, ServerEventResponseFunctionCallArgumentsDone)
            assert function_call_output.name == "get_weather"
            assert function_call_output.arguments in ['{"location":"北京"}', '{"location":"Beijing"}']

            await conn.response.create()
            transcripts, audio_bytes = await _collect_event(
                conn, event_type=ServerEventType.RESPONSE_AUDIO_TRANSCRIPT_DONE, timeout=15
            )
            assert audio_bytes > 50 * 1000
            assert transcripts == 1

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4o", "gpt-4o-realtime"])
    async def test_realtime_service_tool_call_no_audio_overlap(self, test_data_dir: Path, model: str, **kwargs):
        audio_file = test_data_dir / "audio_overlap.input_audio1.wav"
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        tools = [
            FunctionTool(
                name="fetch_merchant_details",
                description="Get category name-Payments & Settlements':funds transferred to merchant’s bank post-deductions,issues collecting payments via QR/scanner,failed payments,MDR,payment mode activation/deactivation(wallet,credit card,postpaid,etc),customer details for payment,payment limits,payments not visible in app.'Lending':merchant loans via Pay,loan applications,closure,offers,Easy Daily Instalments,loan settlement,payments towards EMI/EDI.'Profile':merchant account details,KYC,bank info,settlement timing/frequency requests,display name,address,shop details,account activation/deactivation,bank account update,settlement strategies (X times/day,next day).'Device':hardware issue with Soundbox/EDC,recurring rental charges,device return/deactivation,activation,accumulated dues,commission charges for payments,hardware malfunction for Soundbox/EDC.'Wealth':buying,storing,selling 24K digital gold via Gold Locker in P4B app,activating/canceling/restarting investment plans,viewing gold balance/investment history in Gold Locker.",
                parameters={
                    "type": "object",
                    "properties": {
                        "intent_name": {
                            "type": "string",
                            "description": "The intent category that best matches the merchant's query (Payments and Settlements, Profile, Device, Lending, Wealth).",
                        },
                    },
                    "required": ["intent_name"],
                },
            )
        ]
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(
                instructions="You are a helpful assistant with tools. Please answer the question in detail before calling the function.",
                input_audio_transcription=_get_speech_recognition_setting(model=model),
                tools=tools,
                tool_choice=ToolChoiceLiteral.AUTO,
            )
            await conn.session.update(session=session)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(audio_file))
            timeout_s = 10
            start = asyncio.get_event_loop().time()
            message_types = set()
            while True:
                if asyncio.get_event_loop().time() - start > timeout_s:
                    break

                try:
                    event = await asyncio.wait_for(conn.recv(), timeout=2)  # short per-recv timeout
                except asyncio.TimeoutError:
                    continue

                if event.type == ServerEventType.CONVERSATION_ITEM_CREATED:
                    message_types.add(event.item.type)

            assert len(message_types) == 2

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4o-realtime"])
    @pytest.mark.parametrize("transcription_model", ["whisper-1", "gpt-4o-transcribe", "gpt-4o-mini-transcribe"])
    async def test_realtime_service_input_audio_transcription(
        self,
        test_data_dir: Path,
        model: str,
        transcription_model: Literal["whisper-1", "gpt-4o-transcribe", "gpt-4o-mini-transcribe"],
        **kwargs,
    ):
        file = test_data_dir / "largest_lake.wav"
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            input_audio_transcription = AudioInputTranscriptionOptions(model=transcription_model)
            session = RequestSession(input_audio_transcription=input_audio_transcription)

            await conn.session.update(session=session)
            await _wait_for_event(conn, {ServerEventType.SESSION_UPDATED}, 10)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(file))
            input_audio_transcription_completed_evt = await _wait_for_event(
                conn,
                {
                    ServerEventType.CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_COMPLETED,
                },
                30,
            )

            assert input_audio_transcription_completed_evt.transcript.strip() == "What's the largest lake in the world?"

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize(
        ("model", "turn_detection_cls", "end_of_detection"),
        [
            pytest.param("gpt-4o", ServerVad, AzureSemanticDetection, id="server_vad_w_eou"),
            pytest.param("gpt-4o", AzureSemanticVad, AzureSemanticDetection, id="azure_semantic_vad_en_w_eou"),
            pytest.param(
                "gpt-4o",
                AzureSemanticVadMultilingual,
                AzureSemanticDetection,
                id="azure_semantic_vad_w_eou",
            ),
            pytest.param("gpt-4o", ServerVad, AzureSemanticDetectionEn, id="server_vad_w_eou_en"),
            pytest.param("gpt-4o", AzureSemanticVad, AzureSemanticDetectionEn, id="azure_semantic_vad_en_w_eou_en"),
            pytest.param(
                "gpt-4o",
                AzureSemanticVadMultilingual,
                AzureSemanticDetectionEn,
                id="azure_semantic_vad_w_eou_en",
            ),
        ],
    )
    async def test_realtime_service_with_eou(
        self,
        test_data_dir: Path,
        model: str,
        turn_detection_cls: Type[Union["ServerVad", "AzureSemanticVad", "AzureSemanticVadMultilingual"]],
        end_of_detection: Type[Union["AzureSemanticDetection", "AzureSemanticDetectionEn"]],
        **kwargs,
    ):
        file = test_data_dir / "phone.wav"
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        turn_detection = turn_detection_cls(end_of_utterance_detection=end_of_detection(timeout_ms=2000))
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(
                turn_detection=turn_detection,
                input_audio_transcription=_get_speech_recognition_setting(model=model),
            )

            await conn.session.update(session=session)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(file))
            await conn.input_audio_buffer.append(audio=_get_trailing_silence_bytes(duration_s=0.5))
            events, audio_bytes = await _collect_event(conn, event_type=ServerEventType.RESPONSE_DONE)
            assert events > 0
            assert audio_bytes > 0

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4o-realtime-preview", "gpt-4.1"])
    async def test_realtime_service_with_audio_timestamp_viseme(self, test_data_dir: Path, model: str, **kwargs):
        file = test_data_dir / "4.wav"
        response_audio_word_timestamps = []
        response_blendshape_visemes = []
        audio_bytes = 0
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(
                voice=AzureStandardVoice(name="en-US-NancyNeural"),
                animation=Animation(outputs=[AnimationOutputType.VISEME_ID]),
                output_audio_timestamp_types=[AudioTimestampType.WORD],
            )

            await conn.session.update(session=session)
            await _wait_for_event(conn, {ServerEventType.SESSION_UPDATED}, 10)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(file))

            timeout_s = 10
            start = asyncio.get_event_loop().time()
            while True:
                if asyncio.get_event_loop().time() - start > timeout_s:
                    break

                try:
                    event = await asyncio.wait_for(conn.recv(), timeout=2)  # short per-recv timeout
                except asyncio.TimeoutError:
                    continue

                if event.type == ServerEventType.RESPONSE_ANIMATION_VISEME_DELTA:
                    response_blendshape_visemes.append(event)

                if event.type == ServerEventType.RESPONSE_AUDIO_TIMESTAMP_DELTA:
                    response_audio_word_timestamps.append(event)

                if event.type == ServerEventType.RESPONSE_AUDIO_DELTA:
                    audio_bytes += len(event.delta)

            assert audio_bytes > 0
            assert len(response_audio_word_timestamps) > 0
            assert len(response_blendshape_visemes) > 0

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4o-realtime", "gpt-4o", "phi4-mm-realtime", "phi4-mini"])
    async def test_realtime_service_wo_turn_detection(self, test_data_dir: Path, model: str, **kwargs):
        file = test_data_dir / "ask_weather.mp3"
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(turn_detection={"type": "none"})

            await conn.session.update(session=session)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(file))
            audio_events, trans_events = await _collect_audio_trans_outputs(conn, 5)
            assert audio_events == 0
            assert trans_events == 0
            await conn.input_audio_buffer.commit()
            audio_events, trans_events = await _collect_audio_trans_outputs(conn, 5)
            assert audio_events == 0
            assert trans_events == 0
            await conn.response.create()
            audio_events, trans_events = await _collect_audio_trans_outputs(conn, 10)
            assert audio_events > 0
            assert trans_events > 0

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4o-realtime", "gpt-4.1", "phi4-mm-realtime"])
    async def test_realtime_service_with_voice_properties(self, test_data_dir: Path, model: str, **kwargs):
        file = test_data_dir / "largest_lake.wav"
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(
                voice=AzureStandardVoice(
                    name="en-us-emma:DragonHDLatestNeural", temperature=0.7, rate="1.2", prefer_locales=["en-IN"]
                ),
                input_audio_transcription=_get_speech_recognition_setting(model=model),
            )

            await conn.session.update(session=session)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(file))
            await conn.input_audio_buffer.append(audio=_get_trailing_silence_bytes())
            content_part_added_events, _ = await _collect_event(
                conn, event_type=ServerEventType.RESPONSE_CONTENT_PART_ADDED
            )
            assert content_part_added_events == 1

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4o-realtime"])
    async def test_realtime_service_retrieve_item(self, test_data_dir: Path, model: str, **kwargs):
        file = test_data_dir / "largest_lake.wav"
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(
                instructions="You are a helpful assistant.",
                voice="alloy",
            )

            await conn.session.update(session=session)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(file))
            await conn.input_audio_buffer.append(audio=_get_trailing_silence_bytes())
            output = await _wait_for_event(conn, [ServerEventType.RESPONSE_OUTPUT_ITEM_DONE])
            assert isinstance(output, ServerEventResponseOutputItemDone)
            await conn.conversation.item.retrieve(item_id=output.item.id)
            conversation_retrieved_event = await _wait_for_event(
                conn, [ServerEventType.CONVERSATION_ITEM_RETRIEVED], timeout_s=10
            )
            assert isinstance(
                conversation_retrieved_event, ServerEventConversationItemRetrieved
            ), f"Retrieved message should be an ServerEventConversationItemRetrieved: {conversation_retrieved_event}."
            assert isinstance(
                conversation_retrieved_event.item, ResponseMessageItem
            ), f"Retrieved item should be an ResponseMessageItem: {conversation_retrieved_event.item}."
            assert (
                conversation_retrieved_event.item.role == "assistant"
            ), "Retrieved item should be an assistant message."
            assert conversation_retrieved_event.item.content is not None, "Retrieved item should have content."
            assert isinstance(
                conversation_retrieved_event.item.content[0], ContentPart
            ), f"Retrieved item content should be audio: {conversation_retrieved_event.item.content[0]}."

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4o-realtime"])
    async def test_realtime_service_truncate_item(self, test_data_dir: Path, model: str, **kwargs):
        file = test_data_dir / "largest_lake.wav"
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(
                instructions="You are a helpful assistant.",
            )

            await conn.session.update(session=session)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(file))

            output = await _wait_for_event(conn, [ServerEventType.RESPONSE_OUTPUT_ITEM_DONE])
            assert isinstance(output, ServerEventResponseOutputItemDone)

            await conn.conversation.item.truncate(item_id=output.item.id, content_index=0, audio_end_ms=200)
            conversation_retrieved_event = await _wait_for_event(
                conn, [ServerEventType.CONVERSATION_ITEM_TRUNCATED], timeout_s=10
            )
            assert isinstance(
                conversation_retrieved_event, ServerEventConversationItemTruncated
            ), f"Retrieved item should be an ServerEventConversationItemTruncated: {conversation_retrieved_event}."

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize(
        ("model", "audio_format", "turn_detection"),
        [
            pytest.param(
                "gpt-4o", InputAudioFormat.G711_ULAW, AzureSemanticVad(), id="gpt4o_g711_ulaw_azure_semantic_vad"
            ),
            pytest.param(
                "gpt-4o", InputAudioFormat.G711_ALAW, AzureSemanticVad(), id="gpt4o_g711_alaw_azure_semantic_vad"
            ),
            pytest.param(
                "gpt-4o-realtime-preview",
                InputAudioFormat.G711_ULAW,
                AzureSemanticVad(),
                id="gpt4o_realtime_preview_g711_ulaw_azure_semantic_vad",
            ),
            pytest.param(
                "gpt-4o-realtime-preview",
                InputAudioFormat.G711_ULAW,
                ServerVad(),
                id="gpt4o_realtime_preview_g711_ulaw_server_vad",
            ),
            pytest.param(
                "gpt-4o-realtime-preview",
                InputAudioFormat.G711_ALAW,
                AzureSemanticVad(),
                id="gpt4o_realtime_preview_g711_alaw_azure_semantic_vad",
            ),
            pytest.param(
                "gpt-4o-realtime-preview",
                InputAudioFormat.G711_ALAW,
                ServerVad(),
                id="gpt4o_realtime_preview_g711_alaw_server_vad",
            ),
            pytest.param(
                "phi4-mm-realtime",
                InputAudioFormat.G711_ULAW,
                AzureSemanticVad(),
                id="phi4_mm_realtime_g711_ulaw_azure_semantic_vad",
            ),
            pytest.param(
                "phi4-mm-realtime",
                InputAudioFormat.G711_ALAW,
                AzureSemanticVad(),
                id="phi4_mm_realtime_g711_alaw_azure_semantic_vad",
            ),
            pytest.param(
                "phi4-mini",
                InputAudioFormat.G711_ULAW,
                AzureSemanticVad(),
                id="phi4_mini_g711_ulaw_azure_semantic_vad",
            ),
            pytest.param(
                "phi4-mini",
                InputAudioFormat.G711_ALAW,
                AzureSemanticVad(),
                id="phi4_mini_g711_alaw_azure_semantic_vad",
            ),
        ],
    )
    async def test_realtime_service_with_input_audio_format(
        self, test_data_dir: Path, model: str, audio_format: InputAudioFormat, turn_detection: TurnDetection, **kwargs
    ):
        """Test that all supported input_audio_format values work correctly with all models.

        This test verifies that the input_audio_format field in session configuration
        accepts all supported audio formats (pcm16, g711_ulaw, g711_alaw) and that
        the service can process audio properly regardless of the input format.
        """

        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        # Use the appropriate audio file for each format
        if audio_format == InputAudioFormat.PCM16:
            audio_file = test_data_dir / "largest_lake.wav"
        elif audio_format == InputAudioFormat.G711_ULAW:
            audio_file = test_data_dir / "largest_lake.ulaw"
        elif audio_format == InputAudioFormat.G711_ALAW:
            audio_file = test_data_dir / "largest_lake.alaw"
        else:
            raise ValueError(f"Unsupported audio format: {audio_format}")

        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(
                input_audio_format=audio_format,
                voice=AzureStandardVoice(name="en-US-AriaNeural"),
                instructions="You are a helpful assistant. Please respond briefly to the user's question.",
                turn_detection=turn_detection if turn_detection else None,
                input_audio_transcription=_get_speech_recognition_setting(model=model),
            )

            await conn.session.update(session=session)
            session_updated = await _wait_for_event(conn, {ServerEventType.SESSION_UPDATED})
            await conn.input_audio_buffer.append(audio=_load_audio_b64(audio_file))
            await conn.input_audio_buffer.append(audio=_get_trailing_silence_bytes())
            assert (
                session_updated.session.input_audio_format == audio_format
            ), f"Expected audio format {audio_format}, got {session_updated.session.input_audio_format}"
            assert session_updated.session.input_audio_sampling_rate == 24000 if audio_format == "pcm16" else 8000, (
                f"Expected sampling rate 24000 for pcm16, got {session_updated.session.input_audio_sampling_rate}"
                if audio_format == "pcm16"
                else f"Expected sampling rate 8000 for g711 formats, got {session_updated.session.input_audio_sampling_rate}"
            )

            _, audio_bytes = await _collect_event(conn, event_type=None)
            assert audio_bytes > 50 * 1000, f"Output audio too short for {audio_format} format: {audio_bytes} bytes"

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize(
        ("model", "sampling_rate"),
        [
            pytest.param("gpt-4o-realtime-preview", 16000, id="gpt4o_realtime_16kHz_no_resample"),
            pytest.param("gpt-4o-realtime", 44100, id="gpt4o_realtime_44kHz_no_resample"),
            pytest.param("gpt-4o-realtime", 8000, id="gpt4o_realtime_8kHz_no_resample"),
            pytest.param("gpt-4o", 16000, id="gpt4o_16kHz_no_resample"),
            pytest.param("gpt-4o", 44100, id="gpt4o_44kHz_no_resample"),
            pytest.param("gpt-4.1", 8000, id="gpt4.1_8kHz_no_resample"),
            pytest.param("phi4-mm-realtime", 16000, id="phi4_mm_realtime_16kHz_no_resample"),
            pytest.param("phi4-mm-realtime", 44100, id="phi4_mm_realtime_44kHz_no_resample"),
        ],
    )
    async def test_realtime_service_with_input_audio_sampling_rate(
        self, test_data_dir: Path, model: str, sampling_rate: int, **kwargs
    ):
        """Test that the realtime service works correctly with different input audio sampling rates.

        This test verifies that:
        1. Audio files with different sampling rates (16kHz, 44.1kHz) are processed correctly
        2. The should_resample_audio parameter works as expected
        3. The service generates appropriate responses regardless of input sampling rate
        4. Both resampling enabled and disabled scenarios work correctly
        """

        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        # Use the specified audio file
        audio_file = test_data_dir / f"largest_lake.{sampling_rate // 1000}kHz.wav"

        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(
                voice=AzureStandardVoice(name="en-US-AriaNeural"),
                input_audio_sampling_rate=sampling_rate,
                input_audio_transcription=_get_speech_recognition_setting(model),
                instructions="You are a helpful assistant. Please respond briefly to the user's question about lakes.",
                turn_detection=ServerVad(),
            )

            await conn.session.update(session=session)
            session_updated = await _wait_for_event(conn, {ServerEventType.SESSION_UPDATED}, 10)
            assert session_updated.session.input_audio_sampling_rate == sampling_rate

            await conn.input_audio_buffer.append(audio=_load_audio_b64(audio_file))
            await conn.input_audio_buffer.append(audio=_get_trailing_silence_bytes(sample_rate=sampling_rate))
            speech_started = await _wait_for_event(conn, {ServerEventType.INPUT_AUDIO_BUFFER_SPEECH_STARTED}, 10)
            assert speech_started.audio_start_ms == 0
            speech_stopped = await _wait_for_event(conn, {ServerEventType.INPUT_AUDIO_BUFFER_SPEECH_STOPPED}, 10)
            assert speech_stopped.audio_end_ms == pytest.approx(1664, rel=2e-2)

            _, audio_bytes = await _collect_event(conn, event_type=ServerEventType.RESPONSE_AUDIO_TRANSCRIPT_DELTA)
            assert audio_bytes > 50 * 1000, f"Output audio too short for {audio_file}: {audio_bytes} bytes"

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4.1", "phi4-mini"])
    @pytest.mark.parametrize(
        "audio_output_format",
        [
            "pcm16",
            "pcm16_8000hz",
            "pcm16_16000hz",
            "pcm16_22050hz",
            "pcm16_24000hz",
            "pcm16_44100hz",
            "pcm16_48000hz",
            "g711_ulaw",
            "g711_alaw",
        ],
    )
    async def test_output_formats_with_azure_voice(
        self, test_data_dir: Path, model: str, audio_output_format: str, **kwargs
    ):
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        audio_file = test_data_dir / "largest_lake.wav"
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(
                output_audio_format=audio_output_format,
                input_audio_transcription=_get_speech_recognition_setting(model),
                instructions="You are a helpful assistant.",
                turn_detection=ServerVad(threshold=0.5, prefix_padding_ms=300, silence_duration_ms=200),
            )

            await conn.session.update(session=session)
            session_updated = await _wait_for_event(conn, {ServerEventType.SESSION_UPDATED}, 10)
            assert session_updated.session.output_audio_format == audio_output_format
            await conn.input_audio_buffer.append(audio=_load_audio_b64(audio_file))
            await conn.input_audio_buffer.append(audio=_get_trailing_silence_bytes())
            events, audio_bytes = await _collect_event(conn, event_type=ServerEventType.RESPONSE_AUDIO_DONE, timeout=20)
            assert events == 1
            assert audio_bytes > 10 * 1024

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4o-realtime"])
    @pytest.mark.parametrize(
        "audio_output_format",
        [
            "pcm16",
            "g711_ulaw",
            "g711_alaw",
        ],
    )
    async def test_output_formats_with_openai_voice(
        self, test_data_dir: Path, model: str, audio_output_format: str, **kwargs
    ):
        audio_file = test_data_dir / "largest_lake.wav"
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(
                output_audio_format=audio_output_format,
                input_audio_transcription=_get_speech_recognition_setting(model),
                instructions="You are a helpful assistant.",
                voice="alloy",
            )

            await conn.session.update(session=session)
            session_updated = await _wait_for_event(conn, {ServerEventType.SESSION_UPDATED}, 10)
            assert session_updated.session.output_audio_format == audio_output_format
            await conn.input_audio_buffer.append(audio=_load_audio_b64(audio_file))
            await conn.input_audio_buffer.append(audio=_get_trailing_silence_bytes())
            events, audio_bytes = await _collect_event(conn, event_type=ServerEventType.RESPONSE_OUTPUT_ITEM_DONE)
            assert events == 1
            assert audio_bytes > 10 * 1024

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4o-realtime-preview", "gpt-4.1"])
    async def test_realtime_service_with_echo_cancellation(self, test_data_dir: Path, model: str, **kwargs):
        """Test echo cancellation in the realtime service."""
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        file = test_data_dir / "4.wav"
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(
                input_audio_transcription=_get_speech_recognition_setting(model),
                input_audio_echo_cancellation=AudioEchoCancellation(),
            )

            await conn.session.update(session=session)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(file))
            await conn.input_audio_buffer.append(audio=_get_trailing_silence_bytes())
            segments, audio_bytes = await _collect_event(
                conn, event_type=ServerEventType.INPUT_AUDIO_BUFFER_SPEECH_STARTED
            )
            assert segments > 1, "Expected more than 1 speech segment"
            assert audio_bytes > 0, "Audio bytes should be greater than 0"

    @pytest.mark.live_test_only
    @VoiceLivePreparer()
    @pytest.mark.flaky(reruns=3, reruns_delay=2)
    @pytest.mark.parametrize("model", ["gpt-4.1", "phi4-mm-realtime", "phi4-mini"])
    @pytest.mark.parametrize(
        "audio_output_format",
        [
            "pcm16",
            "pcm16_8000hz",
            "pcm16_16000hz",
            "pcm16_22050hz",
            "pcm16_24000hz",
            "pcm16_44100hz",
            "pcm16_48000hz",
            "g711_ulaw",
            "g711_alaw",
        ],
    )
    async def test_write_loopback_audio_echo_cancellation(
        self, test_data_dir: Path, model: str, audio_output_format: str, **kwargs
    ):
        """Test echo cancellation functionality with write_loopback_audio for different audio formats."""
        audio_file = test_data_dir / "largest_lake.wav"
        voicelive_openai_endpoint = kwargs.pop("voicelive_openai_endpoint")
        voicelive_openai_api_key = kwargs.pop("voicelive_openai_api_key")
        async with connect(
            endpoint=voicelive_openai_endpoint, credential=AzureKeyCredential(voicelive_openai_api_key), model=model
        ) as conn:
            session = RequestSession(
                input_audio_transcription=_get_speech_recognition_setting(model),
                input_audio_echo_cancellation=AudioEchoCancellation(),
                output_audio_format=audio_output_format,
                instructions="You are a helpful assistant.",
            )

            await conn.session.update(session=session)
            await conn.input_audio_buffer.append(audio=_load_audio_b64(audio_file))
            await conn.input_audio_buffer.append(audio=_get_trailing_silence_bytes())
            contents, audio_bytes = await _collect_event(conn, event_type=ServerEventType.RESPONSE_CONTENT_PART_ADDED)
            assert contents >= 1, "Response should be generated with echo cancellation"
            assert audio_bytes > 0, "Audio bytes should be greater than 0"