1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
|
# pylint: disable=line-too-long,useless-suppression
import functools
import pytest
from devtools_testutils import EnvironmentVariableLoader, AzureRecordedTestCase
from devtools_testutils.aio import recorded_by_proxy_async
from azure.core.credentials import AzureKeyCredential
from azure.core.exceptions import HttpResponseError
from azure.ai.language.conversations.authoring.aio import ConversationAuthoringClient
from azure.ai.language.conversations.authoring.models import CreateDeploymentDetails, DeploymentState
ConversationsPreparer = functools.partial(
EnvironmentVariableLoader,
"authoring",
authoring_endpoint="https://Sanitized.cognitiveservices.azure.com/",
authoring_key="fake_key",
)
class TestConversationsAsync(AzureRecordedTestCase):
async def create_client(self, endpoint: str, key: str) -> ConversationAuthoringClient:
return ConversationAuthoringClient(endpoint, AzureKeyCredential(key))
class TestConversationsDeployProjectAsync(TestConversationsAsync):
@ConversationsPreparer()
@recorded_by_proxy_async
@pytest.mark.asyncio
async def test_deploy_project_async(self, authoring_endpoint, authoring_key):
client = await self.create_client(authoring_endpoint, authoring_key)
async with client:
project_name = "EmailApp"
deployment_name = "0828Deployment"
trained_model_label = "Model1"
project_client = client.get_project_client(project_name)
# Build request body for deployment
details = CreateDeploymentDetails(trained_model_label=trained_model_label)
# Act: begin deploy and wait for completion
poller = await project_client.deployment.begin_deploy_project(
deployment_name=deployment_name,
body=details,
)
try:
await poller.result()
except HttpResponseError as e:
print(f"Operation failed: {e.message}")
print(e.error)
raise
# If we get here, the deploy succeeded
print(f"Deploy project completed. done={poller.done()} status={poller.status()}")
|