1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""
FILE: sample_conversation_multi_turn_prediction_async.py
DESCRIPTION:
Run a multi-turn conversation prediction asynchronously using the
Conversational AI task. Prints intents and entities, including spans,
datetime resolutions, and subtype/tag metadata.
USAGE:
python sample_conversation_multi_turn_prediction_async.py
REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
AZURE_CONVERSATIONS_ENDPOINT
AZURE_CLIENT_ID
AZURE_TENANT_ID
AZURE_CLIENT_SECRET
AZURE_CONVERSATIONS_PROJECT_NAME
AZURE_CONVERSATIONS_DEPLOYMENT_NAME
NOTE:
If you prefer `AzureKeyCredential`, set:
AZURE_CONVERSATIONS_ENDPOINT
AZURE_CONVERSATIONS_KEY
"""
# [START conversation_multi_turn_prediction_async]
import os
import asyncio
from azure.identity.aio import DefaultAzureCredential
from azure.ai.language.conversations.aio import ConversationAnalysisClient
from azure.ai.language.conversations.models import (
# Request
ConversationalAITask,
ConversationalAIAnalysisInput,
ConversationalAIActionContent,
TextConversation,
TextConversationItem,
StringIndexType,
# Response/result discriminators
ConversationalAITaskResult,
ConversationalAIResult,
ConversationalAIAnalysis,
ConversationalAIIntent,
ConversationalAIEntity,
ConversationItemRange,
DateTimeResolution,
EntitySubtype,
EntityTag,
)
async def sample_conversation_multi_turn_prediction_async():
# get settings
endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]
project_name = os.environ["AZURE_CONVERSATIONS_PROJECT_NAME"]
deployment_name = os.environ["AZURE_CONVERSATIONS_DEPLOYMENT_NAME"]
# AAD credential
credential = DefaultAzureCredential()
async with ConversationAnalysisClient(endpoint, credential=credential) as client:
# Build a small multi-turn dialog
data = ConversationalAITask(
analysis_input=ConversationalAIAnalysisInput(
conversations=[
TextConversation(
id="order",
language="en-GB",
conversation_items=[
TextConversationItem(id="1", participant_id="user", text="Hi"),
TextConversationItem(id="2", participant_id="bot", text="Hello, how can I help you?"),
TextConversationItem(
id="3",
participant_id="user",
text="Send an email to Carol about tomorrow's demo",
),
],
)
]
),
parameters=ConversationalAIActionContent(
project_name=project_name,
deployment_name=deployment_name,
string_index_type=StringIndexType.UTF16_CODE_UNIT,
),
)
# Async call
response = await client.analyze_conversation(data)
if isinstance(response, ConversationalAITaskResult):
ai_result: ConversationalAIResult = response.result
if not ai_result or not ai_result.conversations:
print("No conversations found in result.")
return
for conversation in ai_result.conversations or []:
print(f"Conversation ID: {conversation.id}\n")
# Intents
print("Intents:")
for intent in conversation.intents or []:
print(f" Name: {intent.name}")
print(f" Type: {intent.type}")
print(" Conversation Item Ranges:")
for rng in intent.conversation_item_ranges or []:
print(f" - Offset: {rng.offset}, Count: {rng.count}")
print("\n Entities (Scoped to Intent):")
for ent in intent.entities or []:
print(f" Name: {ent.name}")
print(f" Text: {ent.text}")
print(f" Confidence: {ent.confidence_score}")
print(f" Offset: {ent.offset}, Length: {ent.length}")
print(
f" Conversation Item ID: {ent.conversation_item_id}, "
f"Index: {ent.conversation_item_index}"
)
# Date/time resolutions
for res in ent.resolutions or []:
if isinstance(res, DateTimeResolution):
print(
f" - [DateTimeResolution] SubKind: {res.date_time_sub_kind}, "
f"Timex: {res.timex}, Value: {res.value}"
)
# Extra information (entity subtype + tags)
for extra in ent.extra_information or []:
if isinstance(extra, EntitySubtype):
print(f" - [EntitySubtype] Value: {extra.value}")
for tag in extra.tags or []:
print(f" • Tag: {tag.name}, Confidence: {tag.confidence_score}")
print()
# Global entities
print("Global Entities:")
for ent in conversation.entities or []:
print(f" Name: {ent.name}")
print(f" Text: {ent.text}")
print(f" Confidence: {ent.confidence_score}")
print(f" Offset: {ent.offset}, Length: {ent.length}")
print(
f" Conversation Item ID: {ent.conversation_item_id}, " f"Index: {ent.conversation_item_index}"
)
for extra in ent.extra_information or []:
if isinstance(extra, EntitySubtype):
print(f" - [EntitySubtype] Value: {extra.value}")
for tag in extra.tags or []:
print(f" • Tag: {tag.name}, Confidence: {tag.confidence_score}")
print("-" * 40)
else:
print("No Conversational AI result returned.")
# [END conversation_multi_turn_prediction_async]
async def main():
await sample_conversation_multi_turn_prediction_async()
if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
|