File: sample_conversation_pii_async.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (173 lines) | stat: -rw-r--r-- 6,131 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_conversation_pii_async.py

DESCRIPTION:
    This sample demonstrates how to run a PII detection action over a conversation (async).

USAGE:
    python sample_conversation_pii_async.py

REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
    AZURE_CONVERSATIONS_ENDPOINT
    AZURE_CLIENT_ID
    AZURE_TENANT_ID
    AZURE_CLIENT_SECRET

NOTE:
    If you want to use AzureKeyCredential instead, set:
      - AZURE_CONVERSATIONS_ENDPOINT
      - AZURE_CONVERSATIONS_KEY
"""

# [START conversation_pii_async]
import os
import asyncio

from azure.identity.aio import DefaultAzureCredential
from azure.ai.language.conversations.aio import ConversationAnalysisClient
from azure.ai.language.conversations.models import (
    MultiLanguageConversationInput,
    TextConversation,
    TextConversationItem,
    ParticipantRole,
    AnalyzeConversationOperationInput,
    PiiOperationAction,
    ConversationPiiActionContent,
    AnalyzeConversationOperationResult,
    ConversationPiiOperationResult,
    InputWarning,
    ConversationError,
)


async def sample_conversation_pii_async():
    # get settings
    endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]

    credential = DefaultAzureCredential()

    entities_detected = []

    async with ConversationAnalysisClient(endpoint, credential=credential) as client:
        # build input
        ml_input = MultiLanguageConversationInput(
            conversations=[
                TextConversation(
                    id="1",
                    language="en",
                    conversation_items=[
                        TextConversationItem(
                            id="1",
                            participant_id="Agent_1",
                            role=ParticipantRole.AGENT,
                            text="Can you provide your name?",
                        ),
                        TextConversationItem(
                            id="2",
                            participant_id="Customer_1",
                            role=ParticipantRole.CUSTOMER,
                            text="Hi, my name is John Doe.",
                        ),
                        TextConversationItem(
                            id="3",
                            participant_id="Agent_1",
                            role=ParticipantRole.AGENT,
                            text="Thank you John, that has been updated in our system.",
                        ),
                    ],
                )
            ]
        )

        pii_action = PiiOperationAction(
            action_content=ConversationPiiActionContent(),
            name="Conversation PII",
        )

        operation_input = AnalyzeConversationOperationInput(
            conversation_input=ml_input,
            actions=[pii_action],
        )

        # start async long-running operation
        poller = await client.begin_analyze_conversation_job(body=operation_input)

        # operation metadata
        print(f"Operation ID: {poller.details.get('operation_id')}")

        # wait for completion
        paged_actions = await poller.result()

        # final-state metadata
        d = poller.details
        print(f"Job ID: {d.get('job_id')}")
        print(f"Status: {d.get('status')}")
        print(f"Created: {d.get('created_date_time')}")
        print(f"Last Updated: {d.get('last_updated_date_time')}")
        if d.get("expiration_date_time"):
            print(f"Expires: {d.get('expiration_date_time')}")
        if d.get("display_name"):
            print(f"Display Name: {d.get('display_name')}")

        # iterate results
        async for actions_page in paged_actions:
            print(
                f"Completed: {actions_page.completed}, "
                f"In Progress: {actions_page.in_progress}, "
                f"Failed: {actions_page.failed}, "
                f"Total: {actions_page.total}"
            )

            for action_result in actions_page.task_results or []:
                print(f"\nAction Name: {action_result.name}")
                print(f"Action Status: {action_result.status}")
                print(f"Kind: {action_result.kind}")

                if isinstance(action_result, ConversationPiiOperationResult):
                    for conversation in action_result.results.conversations or []:
                        print(f"Conversation: #{conversation.id}")
                        print("Detected Entities:")

                        for item in conversation.conversation_items or []:
                            for entity in item.entities or []:
                                print(f"  Category: {entity.category}")
                                print(f"  Subcategory: {entity.subcategory}")
                                print(f"  Text: {entity.text}")
                                print(f"  Offset: {entity.offset}")
                                print(f"  Length: {entity.length}")
                                print(f"  Confidence score: {entity.confidence_score}\n")
                                entities_detected.append(entity)

                        if conversation.warnings:
                            print("Warnings:")
                            for warning in conversation.warnings:
                                if isinstance(warning, InputWarning):
                                    print(f"  Code: {warning.code}")
                                    print(f"  Message: {warning.message}")
                        print()
                else:
                    print("  [No supported results to display for this action type]")

        # errors
        if d.get("errors"):
            print("\nErrors:")
            for err in d["errors"]:
                print(f"  Code: {err.code} - {err.message}")


# [END conversation_pii_async]


async def main():
    await sample_conversation_pii_async()


if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())