File: sample_orchestration_prediction_async.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (116 lines) | stat: -rw-r--r-- 3,949 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_orchestration_prediction_async.py

DESCRIPTION:
    This sample demonstrates how to analyze a user query using an orchestration project.
    In this sample, the orchestration project's top intent routes to a QnA project.

USAGE:
    python sample_orchestration_prediction_async.py

REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
    AZURE_CONVERSATIONS_ENDPOINT
    AZURE_CLIENT_ID
    AZURE_TENANT_ID
    AZURE_CLIENT_SECRET
    AZURE_CONVERSATIONS_PROJECT_NAME
    AZURE_CONVERSATIONS_DEPLOYMENT_NAME

NOTE:
    If you want to use AzureKeyCredential instead, set:
      - AZURE_CONVERSATIONS_ENDPOINT
      - AZURE_CONVERSATIONS_KEY
      - AZURE_CONVERSATIONS_PROJECT_NAME
      - AZURE_CONVERSATIONS_DEPLOYMENT_NAME
"""

# [START orchestration_prediction_async]
import os
import asyncio

from azure.identity.aio import DefaultAzureCredential
from azure.ai.language.conversations.aio import ConversationAnalysisClient
from azure.ai.language.conversations.models import (
    ConversationActionContent,
    ConversationAnalysisInput,
    TextConversationItem,
    StringIndexType,
    ConversationLanguageUnderstandingInput,
    OrchestrationPrediction,
    QuestionAnsweringTargetIntentResult,
    ConversationActionResult,
)


async def sample_orchestration_prediction_async():
    # settings
    endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]
    project_name = os.environ["AZURE_CONVERSATIONS_PROJECT_NAME"]
    deployment_name = os.environ["AZURE_CONVERSATIONS_DEPLOYMENT_NAME"]

    credential = DefaultAzureCredential()

    async with ConversationAnalysisClient(endpoint, credential=credential) as client:
        # Build request using strongly-typed models
        data = ConversationLanguageUnderstandingInput(
            conversation_input=ConversationAnalysisInput(
                conversation_item=TextConversationItem(
                    id="1",
                    participant_id="participant1",
                    text="How are you?",
                )
            ),
            action_content=ConversationActionContent(
                project_name=project_name,
                deployment_name=deployment_name,
                string_index_type=StringIndexType.UTF16_CODE_UNIT,
            ),
        )

        # Call async API
        response = await client.analyze_conversation(data)

        # Narrow to expected result types
        if isinstance(response, ConversationActionResult):
            pred = response.result.prediction
            if isinstance(pred, OrchestrationPrediction):
                # Top intent name is the routed project name
                top_intent = pred.top_intent
                if not top_intent:
                    print("No top intent was returned by orchestration.")
                    return

                print(f"Top intent (responding project): {top_intent}")

                # Look up the routed target result
                target_intent_result = pred.intents.get(top_intent)
                if not isinstance(target_intent_result, QuestionAnsweringTargetIntentResult):
                    print("Top intent did not route to a Question Answering result.")
                    return

                qa = target_intent_result.result
                if qa is not None and qa.answers is not None:
                    for ans in qa.answers:
                        print(ans.answer or "")
            else:
                print("Prediction was not an OrchestrationPrediction.")
        else:
            print("Unexpected result type from analyze_conversation.")


# [END orchestration_prediction_async]


async def main():
    await sample_orchestration_prediction_async()


if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())