1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""
FILE: sample_conversation_pii.py
DESCRIPTION:
This sample demonstrates how to run a PII detection action over a conversation (sync).
USAGE:
python sample_conversation_pii.py
REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
AZURE_CONVERSATIONS_ENDPOINT
AZURE_CLIENT_ID
AZURE_TENANT_ID
AZURE_CLIENT_SECRET
NOTE:
If you want to use AzureKeyCredential instead, set:
- AZURE_CONVERSATIONS_ENDPOINT
- AZURE_CONVERSATIONS_KEY
"""
# [START conversation_pii]
import os
from azure.identity import DefaultAzureCredential
from azure.ai.language.conversations import ConversationAnalysisClient
from azure.ai.language.conversations.models import (
MultiLanguageConversationInput,
TextConversation,
TextConversationItem,
ParticipantRole,
AnalyzeConversationOperationInput,
PiiOperationAction,
ConversationPiiActionContent,
AnalyzeConversationOperationResult,
ConversationPiiOperationResult,
InputWarning,
ConversationError,
)
def sample_conversation_pii():
# get settings
endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]
credential = DefaultAzureCredential()
entities_detected = []
client = ConversationAnalysisClient(endpoint, credential=credential)
# build input
ml_input = MultiLanguageConversationInput(
conversations=[
TextConversation(
id="1",
language="en",
conversation_items=[
TextConversationItem(
id="1",
participant_id="Agent_1",
role=ParticipantRole.AGENT,
text="Can you provide your name?",
),
TextConversationItem(
id="2",
participant_id="Customer_1",
role=ParticipantRole.CUSTOMER,
text="Hi, my name is John Doe.",
),
TextConversationItem(
id="3",
participant_id="Agent_1",
role=ParticipantRole.AGENT,
text="Thank you John, that has been updated in our system.",
),
],
)
]
)
pii_action = PiiOperationAction(
action_content=ConversationPiiActionContent(),
name="Conversation PII",
)
operation_input = AnalyzeConversationOperationInput(
conversation_input=ml_input,
actions=[pii_action],
)
# start long-running operation (sync)
poller = client.begin_analyze_conversation_job(body=operation_input)
# operation metadata
print(f"Operation ID: {poller.details.get('operation_id')}")
# wait for completion
paged_actions = poller.result()
# final-state metadata
d = poller.details
print(f"Job ID: {d.get('job_id')}")
print(f"Status: {d.get('status')}")
print(f"Created: {d.get('created_date_time')}")
print(f"Last Updated: {d.get('last_updated_date_time')}")
if d.get("expiration_date_time"):
print(f"Expires: {d.get('expiration_date_time')}")
if d.get("display_name"):
print(f"Display Name: {d.get('display_name')}")
# iterate results (sync pageable)
for actions_page in paged_actions:
print(
f"Completed: {actions_page.completed}, "
f"In Progress: {actions_page.in_progress}, "
f"Failed: {actions_page.failed}, "
f"Total: {actions_page.total}"
)
for action_result in actions_page.task_results or []:
print(f"\nAction Name: {action_result.name}")
print(f"Action Status: {action_result.status}")
print(f"Kind: {action_result.kind}")
if isinstance(action_result, ConversationPiiOperationResult):
for conversation in action_result.results.conversations or []:
print(f"Conversation: #{conversation.id}")
print("Detected Entities:")
for item in conversation.conversation_items or []:
for entity in item.entities or []:
print(f" Category: {entity.category}")
print(f" Subcategory: {entity.subcategory}")
print(f" Text: {entity.text}")
print(f" Offset: {entity.offset}")
print(f" Length: {entity.length}")
print(f" Confidence score: {entity.confidence_score}\n")
entities_detected.append(entity)
if conversation.warnings:
print("Warnings:")
for warning in conversation.warnings:
if isinstance(warning, InputWarning):
print(f" Code: {warning.code}")
print(f" Message: {warning.message}")
print()
else:
print(" [No supported results to display for this action type]")
# errors
if d.get("errors"):
print("\nErrors:")
for err in d["errors"]:
print(f" Code: {err.code} - {err.message}")
# [END conversation_pii]
def main():
sample_conversation_pii()
if __name__ == "__main__":
main()
|