File: sample_conversation_pii_with_character_mask_policy.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (149 lines) | stat: -rw-r--r-- 4,957 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_conversation_pii_with_character_mask_policy.py

DESCRIPTION:
    This sample demonstrates how to run a PII detection action over a conversation
    using the `CharacterMaskPolicyType` synchronously. Detected PII is redacted
    by replacing characters with a mask (e.g., '*').

USAGE:
    python sample_conversation_pii_with_character_mask_policy.py

REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
    AZURE_CONVERSATIONS_ENDPOINT
    AZURE_CLIENT_ID
    AZURE_TENANT_ID
    AZURE_CLIENT_SECRET

NOTE:
    If you want to use AzureKeyCredential instead, set:
      - AZURE_CONVERSATIONS_ENDPOINT
      - AZURE_CONVERSATIONS_KEY
"""

# [START conversation_pii_with_character_mask_policy]
import os

from azure.identity import DefaultAzureCredential
from azure.ai.language.conversations import ConversationAnalysisClient
from azure.ai.language.conversations.models import (
    MultiLanguageConversationInput,
    TextConversation,
    TextConversationItem,
    ParticipantRole,
    AnalyzeConversationOperationInput,
    PiiOperationAction,
    ConversationPiiActionContent,
    CharacterMaskPolicyType,
    RedactionCharacter,
    ConversationPiiOperationResult,
    ConversationError,
)


def sample_conversation_pii_with_character_mask_policy():
    # settings
    endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]

    # AAD credential
    credential = DefaultAzureCredential()

    redacted_verified: list[str] = []

    client = ConversationAnalysisClient(endpoint, credential=credential)

    # build input
    ml_input = MultiLanguageConversationInput(
        conversations=[
            TextConversation(
                id="1",
                language="en",
                conversation_items=[
                    TextConversationItem(
                        id="1",
                        participant_id="Agent_1",
                        role=ParticipantRole.AGENT,
                        text="Can you provide your name?",
                    ),
                    TextConversationItem(
                        id="2",
                        participant_id="Customer_1",
                        role=ParticipantRole.CUSTOMER,
                        text="Hi, my name is John Doe.",
                    ),
                    TextConversationItem(
                        id="3",
                        participant_id="Agent_1",
                        role=ParticipantRole.AGENT,
                        text="Thank you John, that has been updated in our system.",
                    ),
                ],
            )
        ]
    )

    # action with CharacterMaskPolicyType
    redaction_policy = CharacterMaskPolicyType(redaction_character=RedactionCharacter.ASTERISK)
    pii_action = PiiOperationAction(
        action_content=ConversationPiiActionContent(redaction_policy=redaction_policy),
        name="Conversation PII with Character Mask Policy",
    )

    operation_input = AnalyzeConversationOperationInput(
        conversation_input=ml_input,
        actions=[pii_action],
    )

    # start long-running job
    poller = client.begin_analyze_conversation_job(body=operation_input)
    print(f"Operation ID: {poller.details.get('operation_id')}")

    # wait for completion
    paged_actions = poller.result()

    # final metadata
    d = poller.details
    print(f"Job ID: {d.get('job_id')}")
    print(f"Status: {d.get('status')}")
    if d.get("errors"):
        print("Errors:")
        for err in d["errors"]:
            print(f"  Code: {err.code} - {err.message}")

    # iterate results and verify redaction
    for actions_page in paged_actions:
        for action_result in actions_page.task_results or []:
            if isinstance(action_result, ConversationPiiOperationResult):
                for conversation in action_result.results.conversations or []:
                    for item in conversation.conversation_items or []:
                        redacted_text = (item.redacted_content.text or "").strip()
                        if not redacted_text:
                            continue

                        if item.entities:
                            for entity in item.entities:
                                ent_text = entity.text or ""
                                if ent_text in redacted_text:
                                    print(
                                        f"WARNING: Expected '{ent_text}' to be redacted but found in: {redacted_text}"
                                    )

                            if "*" in redacted_text:
                                redacted_verified.append(redacted_text)


# [END conversation_pii_with_character_mask_policy]


def main():
    sample_conversation_pii_with_character_mask_policy()


if __name__ == "__main__":
    main()