1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
# pylint: disable=line-too-long,useless-suppression
import functools
import pytest
from devtools_testutils import AzureRecordedTestCase, EnvironmentVariableLoader, recorded_by_proxy
from azure.ai.language.conversations import ConversationAnalysisClient
from azure.ai.language.conversations.models import (
ConversationalAITask,
ConversationalAIAnalysisInput,
TextConversation,
TextConversationItem,
ConversationalAIActionContent,
AnalyzeConversationActionResult,
StringIndexType,
ConversationalAITaskResult,
ConversationalAIResult,
ConversationalAIAnalysis,
ConversationalAIIntent,
ConversationalAIEntity,
ConversationItemRange,
DateTimeResolution,
EntitySubtype,
EntityTag,
)
from typing import cast
from azure.core.credentials import AzureKeyCredential
ConversationsPreparer = functools.partial(
EnvironmentVariableLoader,
"conversations",
conversations_endpoint="https://Sanitized.cognitiveservices.azure.com/",
conversations_key="fake_key",
)
class TestConversations(AzureRecordedTestCase):
# Start with any helper functions you might need, for example a client creation method:
def create_client(self, endpoint, key):
credential = AzureKeyCredential(key)
client = ConversationAnalysisClient(endpoint, credential)
return client
...
class TestConversationsCase(TestConversations):
@ConversationsPreparer()
@recorded_by_proxy
def test_conversation_multi_turn_prediction(self, conversations_endpoint, conversations_key):
client = self.create_client(conversations_endpoint, conversations_key)
project_name = "EmailApp"
deployment_name = "production"
data = ConversationalAITask(
analysis_input=ConversationalAIAnalysisInput(
conversations=[
TextConversation(
id="order",
language="en-GB",
conversation_items=[
TextConversationItem(id="1", participant_id="user", text="Hi"),
TextConversationItem(id="2", participant_id="bot", text="Hello, how can I help you?"),
TextConversationItem(
id="3",
participant_id="user",
text="Send an email to Carol about tomorrow's demo",
),
],
)
]
),
parameters=ConversationalAIActionContent(
project_name=project_name,
deployment_name=deployment_name,
string_index_type=StringIndexType.UTF16_CODE_UNIT,
),
)
# Call API
response: AnalyzeConversationActionResult = client.analyze_conversation(data)
# Narrow to ConversationalAI task result (C# style: `as ConversationalAITaskResult`)
ai_task_result = cast(ConversationalAITaskResult, response)
ai_result: ConversationalAIResult = ai_task_result.result
# Basic sanity
assert ai_result is not None
assert ai_result.conversations is not None
# Iterate conversations
for conversation in ai_result.conversations or []:
conversation = cast(ConversationalAIAnalysis, conversation)
print(f"Conversation ID: {conversation.id}\n")
# Intents
print("Intents:")
for intent in conversation.intents or []:
intent = cast(ConversationalAIIntent, intent)
print(f" Name: {intent.name}")
print(f" Type: {getattr(intent, 'type', None)}")
print(" Conversation Item Ranges:")
for rng in intent.conversation_item_ranges or []:
rng = cast(ConversationItemRange, rng)
print(f" - Offset: {rng.offset}, Count: {rng.count}")
print("\n Entities (Scoped to Intent):")
for ent in intent.entities or []:
ent = cast(ConversationalAIEntity, ent)
print(f" Name: {ent.name}")
print(f" Text: {ent.text}")
print(f" Confidence: {ent.confidence_score}")
print(f" Offset: {ent.offset}, Length: {ent.length}")
print(f" Conversation Item ID: {ent.conversation_item_id}, Index: {ent.conversation_item_index}")
# Date/time resolutions
if ent.resolutions:
for res in ent.resolutions:
if isinstance(res, DateTimeResolution):
print(
f" - [DateTimeResolution] SubKind: {getattr(res, 'date_time_sub_kind', None)}, "
f"Timex: {res.timex}, Value: {res.value}"
)
# Extra information (entity subtype + tags)
if ent.extra_information:
for extra in ent.extra_information:
if isinstance(extra, EntitySubtype):
print(f" - [EntitySubtype] Value: {extra.value}")
for tag in extra.tags or []:
tag = cast(EntityTag, tag)
print(f" • Tag: {tag.name}, Confidence: {tag.confidence_score}")
print()
print()
# Global entities
print("Global Entities:")
for ent in conversation.entities or []:
ent = cast(ConversationalAIEntity, ent)
print(f" Name: {ent.name}")
print(f" Text: {ent.text}")
print(f" Confidence: {ent.confidence_score}")
print(f" Offset: {ent.offset}, Length: {ent.length}")
print(f" Conversation Item ID: {ent.conversation_item_id}, Index: {ent.conversation_item_index}")
if ent.extra_information:
for extra in ent.extra_information:
if isinstance(extra, EntitySubtype):
print(f" - [EntitySubtype] Value: {extra.value}")
for tag in extra.tags or []:
tag = cast(EntityTag, tag)
print(f" • Tag: {tag.name}, Confidence: {tag.confidence_score}")
print()
print("-" * 40)
|