File: test_conversation_pii.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (159 lines) | stat: -rw-r--r-- 6,823 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import functools
import pytest

from devtools_testutils import AzureRecordedTestCase, EnvironmentVariableLoader, recorded_by_proxy
from azure.ai.language.conversations import ConversationAnalysisClient, AnalyzeConversationLROPoller
from azure.core.paging import ItemPaged
from azure.ai.language.conversations.models import (
    # request models
    AnalyzeConversationOperationInput,
    MultiLanguageConversationInput,
    TextConversation,
    TextConversationItem,
    PiiOperationAction,
    ConversationPiiActionContent,
    ConversationActions,
    AnalyzeConversationOperationResult,
    ConversationPiiOperationResult,
    ConversationalPiiResult,
    ConversationPiiItemResult,
    NamedEntity,
    InputWarning,
    ConversationError,
    AnalyzeConversationOperationAction,
)
from typing import cast, List

from azure.core.credentials import AzureKeyCredential

ConversationsPreparer = functools.partial(
    EnvironmentVariableLoader,
    "conversations",
    conversations_endpoint="https://Sanitized.cognitiveservices.azure.com/",
    conversations_key="fake_key",
)


class TestConversations(AzureRecordedTestCase):

    # Start with any helper functions you might need, for example a client creation method:
    def create_client(self, endpoint, key):
        credential = AzureKeyCredential(key)
        client = ConversationAnalysisClient(endpoint, credential)
        return client

    ...


class TestConversationsCase(TestConversations):
    @ConversationsPreparer()
    @recorded_by_proxy
    def test_conversation_pii(self, conversations_endpoint, conversations_key):
        client = self.create_client(conversations_endpoint, conversations_key)

        entities_detected: List[NamedEntity] = []

        # ---- Build input ------------------------------------
        ml_input = MultiLanguageConversationInput(
            conversations=[
                TextConversation(
                    id="1",
                    language="en",
                    conversation_items=[
                        TextConversationItem(id="1", participant_id="Agent_1", text="Can you provide you name?"),
                        TextConversationItem(id="2", participant_id="Customer_1", text="Hi, my name is John Doe."),
                        TextConversationItem(
                            id="3",
                            participant_id="Agent_1",
                            text="Thank you John, that has been updated in our system.",
                        ),
                    ],
                )
            ]
        )

        pii_action: AnalyzeConversationOperationAction = PiiOperationAction(
            action_content=ConversationPiiActionContent(),
            name="Conversation PII",
        )
        actions: List[AnalyzeConversationOperationAction] = [pii_action]

        operation_input = AnalyzeConversationOperationInput(
            conversation_input=ml_input,
            actions=actions,
        )

        # ---- Begin LRO --------------------------------------------------------
        poller: AnalyzeConversationLROPoller[ItemPaged[ConversationActions]] = client.begin_analyze_conversation_job(
            body=operation_input
        )

        # Operation metadata is available immediately
        print(f"Operation ID: {poller.details.get('operation_id')}")

        # Wait for completion; result is ItemPaged[ConversationActions]
        paged_actions: ItemPaged[ConversationActions] = poller.result()

        # Final-state metadata
        d = poller.details
        print(f"Job ID: {d.get('job_id')}")
        print(f"Status: {d.get('status')}")
        print(f"Created: {d.get('created_date_time')}")
        print(f"Last Updated: {d.get('last_updated_date_time')}")
        if d.get("expiration_date_time"):
            print(f"Expires: {d.get('expiration_date_time')}")
        if d.get("display_name"):
            print(f"Display Name: {d.get('display_name')}")

        # ---- Iterate pages and action results --------------------------------
        for actions_page in paged_actions:
            print(
                f"Completed: {actions_page.completed}, "
                f"In Progress: {actions_page.in_progress}, "
                f"Failed: {actions_page.failed}, "
                f"Total: {actions_page.total}"
            )

            for action_result in actions_page.task_results or []:
                ar = cast(AnalyzeConversationOperationResult, action_result)
                print(f"\nAction Name: {getattr(ar, 'name', None)}")
                print(f"Action Status: {getattr(ar, 'status', None)}")
                print(f"Kind: {getattr(ar, 'kind', None)}")

                if isinstance(ar, ConversationPiiOperationResult):
                    for conversation in ar.results.conversations or []:
                        conversation = cast(ConversationalPiiResult, conversation)
                        print(f"Conversation: #{conversation.id}")
                        print("Detected Entities:")
                        for item in conversation.conversation_items or []:
                            item = cast(ConversationPiiItemResult, item)
                            for entity in item.entities or []:
                                entity = cast(NamedEntity, entity)
                                print(f"  Category: {entity.category}")
                                print(f"  Subcategory: {entity.subcategory}")
                                print(f"  Text: {entity.text}")
                                print(f"  Offset: {entity.offset}")
                                print(f"  Length: {entity.length}")
                                print(f"  Confidence score: {entity.confidence_score}\n")
                                entities_detected.append(entity)

                        if conversation.warnings:
                            print("Warnings:")
                            for warning in conversation.warnings:
                                warning = cast(InputWarning, warning)
                                print(f"  Code: {warning.code}")
                                print(f"  Message: {warning.message}")
                        print()
                else:
                    print("  [No supported results to display for this action type]")

        # ---- Print errors (from final-state metadata) -------------------------
        if d.get("errors"):
            print("\nErrors:")
            for err in d["errors"]:
                err = cast(ConversationError, err)
                print(f"  Code: {err.code} - {err.message}")

        # ---- Assertions -------------------------------------------------------
        assert len(entities_detected) > 0, "Expected at least one PII entity."
        assert (d.get("status") or "").lower() in {"succeeded", "partiallysucceeded"}