1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
import functools
import pytest
from devtools_testutils import AzureRecordedTestCase, EnvironmentVariableLoader, recorded_by_proxy
from azure.ai.language.conversations import ConversationAnalysisClient, AnalyzeConversationLROPoller
from azure.core.paging import ItemPaged
from azure.ai.language.conversations.models import (
# request models
AnalyzeConversationOperationInput,
MultiLanguageConversationInput,
TextConversation,
TextConversationItem,
PiiOperationAction,
ConversationPiiActionContent,
ConversationActions,
AnalyzeConversationOperationResult,
ConversationPiiOperationResult,
ConversationalPiiResult,
ConversationPiiItemResult,
NamedEntity,
InputWarning,
ConversationError,
AnalyzeConversationOperationAction,
)
from typing import cast, List
from azure.core.credentials import AzureKeyCredential
ConversationsPreparer = functools.partial(
EnvironmentVariableLoader,
"conversations",
conversations_endpoint="https://Sanitized.cognitiveservices.azure.com/",
conversations_key="fake_key",
)
class TestConversations(AzureRecordedTestCase):
# Start with any helper functions you might need, for example a client creation method:
def create_client(self, endpoint, key):
credential = AzureKeyCredential(key)
client = ConversationAnalysisClient(endpoint, credential)
return client
...
class TestConversationsCase(TestConversations):
@ConversationsPreparer()
@recorded_by_proxy
def test_conversation_pii(self, conversations_endpoint, conversations_key):
client = self.create_client(conversations_endpoint, conversations_key)
entities_detected: List[NamedEntity] = []
# ---- Build input ------------------------------------
ml_input = MultiLanguageConversationInput(
conversations=[
TextConversation(
id="1",
language="en",
conversation_items=[
TextConversationItem(id="1", participant_id="Agent_1", text="Can you provide you name?"),
TextConversationItem(id="2", participant_id="Customer_1", text="Hi, my name is John Doe."),
TextConversationItem(
id="3",
participant_id="Agent_1",
text="Thank you John, that has been updated in our system.",
),
],
)
]
)
pii_action: AnalyzeConversationOperationAction = PiiOperationAction(
action_content=ConversationPiiActionContent(),
name="Conversation PII",
)
actions: List[AnalyzeConversationOperationAction] = [pii_action]
operation_input = AnalyzeConversationOperationInput(
conversation_input=ml_input,
actions=actions,
)
# ---- Begin LRO --------------------------------------------------------
poller: AnalyzeConversationLROPoller[ItemPaged[ConversationActions]] = client.begin_analyze_conversation_job(
body=operation_input
)
# Operation metadata is available immediately
print(f"Operation ID: {poller.details.get('operation_id')}")
# Wait for completion; result is ItemPaged[ConversationActions]
paged_actions: ItemPaged[ConversationActions] = poller.result()
# Final-state metadata
d = poller.details
print(f"Job ID: {d.get('job_id')}")
print(f"Status: {d.get('status')}")
print(f"Created: {d.get('created_date_time')}")
print(f"Last Updated: {d.get('last_updated_date_time')}")
if d.get("expiration_date_time"):
print(f"Expires: {d.get('expiration_date_time')}")
if d.get("display_name"):
print(f"Display Name: {d.get('display_name')}")
# ---- Iterate pages and action results --------------------------------
for actions_page in paged_actions:
print(
f"Completed: {actions_page.completed}, "
f"In Progress: {actions_page.in_progress}, "
f"Failed: {actions_page.failed}, "
f"Total: {actions_page.total}"
)
for action_result in actions_page.task_results or []:
ar = cast(AnalyzeConversationOperationResult, action_result)
print(f"\nAction Name: {getattr(ar, 'name', None)}")
print(f"Action Status: {getattr(ar, 'status', None)}")
print(f"Kind: {getattr(ar, 'kind', None)}")
if isinstance(ar, ConversationPiiOperationResult):
for conversation in ar.results.conversations or []:
conversation = cast(ConversationalPiiResult, conversation)
print(f"Conversation: #{conversation.id}")
print("Detected Entities:")
for item in conversation.conversation_items or []:
item = cast(ConversationPiiItemResult, item)
for entity in item.entities or []:
entity = cast(NamedEntity, entity)
print(f" Category: {entity.category}")
print(f" Subcategory: {entity.subcategory}")
print(f" Text: {entity.text}")
print(f" Offset: {entity.offset}")
print(f" Length: {entity.length}")
print(f" Confidence score: {entity.confidence_score}\n")
entities_detected.append(entity)
if conversation.warnings:
print("Warnings:")
for warning in conversation.warnings:
warning = cast(InputWarning, warning)
print(f" Code: {warning.code}")
print(f" Message: {warning.message}")
print()
else:
print(" [No supported results to display for this action type]")
# ---- Print errors (from final-state metadata) -------------------------
if d.get("errors"):
print("\nErrors:")
for err in d["errors"]:
err = cast(ConversationError, err)
print(f" Code: {err.code} - {err.message}")
# ---- Assertions -------------------------------------------------------
assert len(entities_detected) > 0, "Expected at least one PII entity."
assert (d.get("status") or "").lower() in {"succeeded", "partiallysucceeded"}
|