File: test_conversation_pii_async.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (164 lines) | stat: -rw-r--r-- 7,466 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# pylint: disable=line-too-long,useless-suppression
import functools
import pytest

from devtools_testutils import AzureRecordedTestCase, EnvironmentVariableLoader
from devtools_testutils.aio import recorded_by_proxy_async
from azure.core.async_paging import AsyncItemPaged
from azure.ai.language.conversations.aio import ConversationAnalysisClient, AnalyzeConversationAsyncLROPoller
from azure.ai.language.conversations.models import (
    AnalyzeConversationOperationInput,
    MultiLanguageConversationInput,
    TextConversation,
    TextConversationItem,
    AnalyzeConversationOperationAction,
    PiiOperationAction,
    ConversationPiiActionContent,
    ConversationActions,
    AnalyzeConversationOperationResult,
    ConversationPiiOperationResult,
    ConversationalPiiResult,
    ConversationPiiItemResult,
    NamedEntity,
    InputWarning,
    ConversationError,
)
from typing import cast, List
from azure.core.credentials import AzureKeyCredential

ConversationsPreparer = functools.partial(
    EnvironmentVariableLoader,
    "conversations",
    conversations_endpoint="https://Sanitized.cognitiveservices.azure.com/",
    conversations_key="fake_key",
)


class TestConversations(AzureRecordedTestCase):

    # Start with any helper functions you might need, for example a client creation method:
    async def create_client(self, endpoint, key):
        credential = AzureKeyCredential(key)
        client = ConversationAnalysisClient(endpoint, credential)
        return client

    ...


class TestConversationsCase(TestConversations):
    @ConversationsPreparer()
    @recorded_by_proxy_async
    @pytest.mark.asyncio
    async def test_conversation_pii_async(self, conversations_endpoint, conversations_key):
        client = await self.create_client(conversations_endpoint, conversations_key)

        try:
            # Build conversation input
            entities_detected: List[NamedEntity] = []

            # ---- Build input ------------------------------------
            ml_input = MultiLanguageConversationInput(
                conversations=[
                    TextConversation(
                        id="1",
                        language="en",
                        conversation_items=[
                            TextConversationItem(id="1", participant_id="Agent_1", text="Can you provide you name?"),
                            TextConversationItem(id="2", participant_id="Customer_1", text="Hi, my name is John Doe."),
                            TextConversationItem(
                                id="3",
                                participant_id="Agent_1",
                                text="Thank you John, that has been updated in our system.",
                            ),
                        ],
                    )
                ]
            )

            pii_action: AnalyzeConversationOperationAction = PiiOperationAction(
                action_content=ConversationPiiActionContent(),
                name="Conversation PII",
            )
            actions: List[AnalyzeConversationOperationAction] = [pii_action]

            operation_input = AnalyzeConversationOperationInput(
                conversation_input=ml_input,
                actions=actions,
            )

            # ---- Begin LRO ----------------------------------------------------
            poller: AnalyzeConversationAsyncLROPoller[AsyncItemPaged[ConversationActions]] = (
                await client.begin_analyze_conversation_job(body=operation_input)
            )

            # Operation metadata is available immediately
            print(f"Operation ID: {poller.details.get('operation_id')}")

            # Wait for completion; result is AsyncItemPaged[ConversationActions]
            paged_actions: AsyncItemPaged[ConversationActions] = await poller.result()

            # Final-state metadata
            d = poller.details
            print(f"Job ID: {d.get('job_id')}")
            print(f"Status: {d.get('status')}")
            print(f"Created: {d.get('created_date_time')}")
            print(f"Last Updated: {d.get('last_updated_date_time')}")
            if d.get("expiration_date_time"):
                print(f"Expires: {d.get('expiration_date_time')}")
            if d.get("display_name"):
                print(f"Display Name: {d.get('display_name')}")

            # ---- Iterate pages and action results ----------------------------
            async for actions_page in paged_actions:
                print(
                    f"Completed: {actions_page.completed}, "
                    f"In Progress: {actions_page.in_progress}, "
                    f"Failed: {actions_page.failed}, "
                    f"Total: {actions_page.total}"
                )

                for action_result in actions_page.task_results or []:
                    ar = cast(AnalyzeConversationOperationResult, action_result)
                    print(f"\nAction Name: {getattr(ar, 'name', None)}")
                    print(f"Action Status: {getattr(ar, 'status', None)}")
                    print(f"Kind: {getattr(ar, 'kind', None)}")

                    if isinstance(ar, ConversationPiiOperationResult):
                        for conversation in ar.results.conversations or []:
                            conversation = cast(ConversationalPiiResult, conversation)
                            print(f"Conversation: #{conversation.id}")
                            print("Detected Entities:")
                            for item in conversation.conversation_items or []:
                                item = cast(ConversationPiiItemResult, item)
                                for entity in item.entities or []:
                                    entity = cast(NamedEntity, entity)
                                    print(f"  Category: {entity.category}")
                                    print(f"  Subcategory: {entity.subcategory}")
                                    print(f"  Text: {entity.text}")
                                    print(f"  Offset: {entity.offset}")
                                    print(f"  Length: {entity.length}")
                                    print(f"  Confidence score: {entity.confidence_score}\n")
                                    entities_detected.append(entity)

                            if conversation.warnings:
                                print("Warnings:")
                                for warning in conversation.warnings:
                                    warning = cast(InputWarning, warning)
                                    print(f"  Code: {warning.code}")
                                    print(f"  Message: {warning.message}")
                            print()
                    else:
                        print("  [No supported results to display for this action type]")

            # ---- Print errors (from final-state metadata) ---------------------
            if d.get("errors"):
                print("\nErrors:")
                for err in d["errors"]:
                    err = cast(ConversationError, err)
                    print(f"  Code: {err.code} - {err.message}")

            # ---- Assertions ---------------------------------------------------
            assert len(entities_detected) > 0, "Expected at least one PII entity."
            assert (d.get("status") or "").lower() in {"succeeded", "partiallysucceeded"}
        finally:
            await client.close()