1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
# pylint: disable=line-too-long,useless-suppression
import functools
import pytest
from devtools_testutils import AzureRecordedTestCase, EnvironmentVariableLoader
from devtools_testutils.aio import recorded_by_proxy_async
from azure.core.async_paging import AsyncItemPaged
from azure.ai.language.conversations.aio import ConversationAnalysisClient, AnalyzeConversationAsyncLROPoller
from azure.ai.language.conversations.models import (
AnalyzeConversationOperationInput,
MultiLanguageConversationInput,
TextConversation,
TextConversationItem,
AnalyzeConversationOperationAction,
PiiOperationAction,
ConversationPiiActionContent,
ConversationActions,
AnalyzeConversationOperationResult,
ConversationPiiOperationResult,
ConversationalPiiResult,
ConversationPiiItemResult,
NamedEntity,
InputWarning,
ConversationError,
)
from typing import cast, List
from azure.core.credentials import AzureKeyCredential
ConversationsPreparer = functools.partial(
EnvironmentVariableLoader,
"conversations",
conversations_endpoint="https://Sanitized.cognitiveservices.azure.com/",
conversations_key="fake_key",
)
class TestConversations(AzureRecordedTestCase):
# Start with any helper functions you might need, for example a client creation method:
async def create_client(self, endpoint, key):
credential = AzureKeyCredential(key)
client = ConversationAnalysisClient(endpoint, credential)
return client
...
class TestConversationsCase(TestConversations):
@ConversationsPreparer()
@recorded_by_proxy_async
@pytest.mark.asyncio
async def test_conversation_pii_async(self, conversations_endpoint, conversations_key):
client = await self.create_client(conversations_endpoint, conversations_key)
try:
# Build conversation input
entities_detected: List[NamedEntity] = []
# ---- Build input ------------------------------------
ml_input = MultiLanguageConversationInput(
conversations=[
TextConversation(
id="1",
language="en",
conversation_items=[
TextConversationItem(id="1", participant_id="Agent_1", text="Can you provide you name?"),
TextConversationItem(id="2", participant_id="Customer_1", text="Hi, my name is John Doe."),
TextConversationItem(
id="3",
participant_id="Agent_1",
text="Thank you John, that has been updated in our system.",
),
],
)
]
)
pii_action: AnalyzeConversationOperationAction = PiiOperationAction(
action_content=ConversationPiiActionContent(),
name="Conversation PII",
)
actions: List[AnalyzeConversationOperationAction] = [pii_action]
operation_input = AnalyzeConversationOperationInput(
conversation_input=ml_input,
actions=actions,
)
# ---- Begin LRO ----------------------------------------------------
poller: AnalyzeConversationAsyncLROPoller[AsyncItemPaged[ConversationActions]] = (
await client.begin_analyze_conversation_job(body=operation_input)
)
# Operation metadata is available immediately
print(f"Operation ID: {poller.details.get('operation_id')}")
# Wait for completion; result is AsyncItemPaged[ConversationActions]
paged_actions: AsyncItemPaged[ConversationActions] = await poller.result()
# Final-state metadata
d = poller.details
print(f"Job ID: {d.get('job_id')}")
print(f"Status: {d.get('status')}")
print(f"Created: {d.get('created_date_time')}")
print(f"Last Updated: {d.get('last_updated_date_time')}")
if d.get("expiration_date_time"):
print(f"Expires: {d.get('expiration_date_time')}")
if d.get("display_name"):
print(f"Display Name: {d.get('display_name')}")
# ---- Iterate pages and action results ----------------------------
async for actions_page in paged_actions:
print(
f"Completed: {actions_page.completed}, "
f"In Progress: {actions_page.in_progress}, "
f"Failed: {actions_page.failed}, "
f"Total: {actions_page.total}"
)
for action_result in actions_page.task_results or []:
ar = cast(AnalyzeConversationOperationResult, action_result)
print(f"\nAction Name: {getattr(ar, 'name', None)}")
print(f"Action Status: {getattr(ar, 'status', None)}")
print(f"Kind: {getattr(ar, 'kind', None)}")
if isinstance(ar, ConversationPiiOperationResult):
for conversation in ar.results.conversations or []:
conversation = cast(ConversationalPiiResult, conversation)
print(f"Conversation: #{conversation.id}")
print("Detected Entities:")
for item in conversation.conversation_items or []:
item = cast(ConversationPiiItemResult, item)
for entity in item.entities or []:
entity = cast(NamedEntity, entity)
print(f" Category: {entity.category}")
print(f" Subcategory: {entity.subcategory}")
print(f" Text: {entity.text}")
print(f" Offset: {entity.offset}")
print(f" Length: {entity.length}")
print(f" Confidence score: {entity.confidence_score}\n")
entities_detected.append(entity)
if conversation.warnings:
print("Warnings:")
for warning in conversation.warnings:
warning = cast(InputWarning, warning)
print(f" Code: {warning.code}")
print(f" Message: {warning.message}")
print()
else:
print(" [No supported results to display for this action type]")
# ---- Print errors (from final-state metadata) ---------------------
if d.get("errors"):
print("\nErrors:")
for err in d["errors"]:
err = cast(ConversationError, err)
print(f" Code: {err.code} - {err.message}")
# ---- Assertions ---------------------------------------------------
assert len(entities_detected) > 0, "Expected at least one PII entity."
assert (d.get("status") or "").lower() in {"succeeded", "partiallysucceeded"}
finally:
await client.close()
|