File: test_conversation_summarization.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (143 lines) | stat: -rw-r--r-- 6,111 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# pylint: disable=line-too-long,useless-suppression
import functools
import pytest

from devtools_testutils import AzureRecordedTestCase, EnvironmentVariableLoader, recorded_by_proxy
from azure.ai.language.conversations import ConversationAnalysisClient, AnalyzeConversationLROPoller
from azure.core.paging import ItemPaged
from azure.ai.language.conversations.models import (
    MultiLanguageConversationInput,
    TextConversation,
    TextConversationItem,
    SummarizationOperationAction,
    ConversationSummarizationActionContent,
    SummaryAspect,
    AnalyzeConversationOperationInput,
    ParticipantRole,
    AnalyzeConversationOperationAction,
    SummarizationOperationResult,
    ConversationActions,
)
from typing import cast, List
from azure.core.credentials import AzureKeyCredential

ConversationsPreparer = functools.partial(
    EnvironmentVariableLoader,
    "conversations",
    conversations_endpoint="https://Sanitized.cognitiveservices.azure.com/",
    conversations_key="fake_key",
)


class TestConversations(AzureRecordedTestCase):

    # Start with any helper functions you might need, for example a client creation method:
    def create_client(self, endpoint, key):
        credential = AzureKeyCredential(key)
        client = ConversationAnalysisClient(endpoint, credential)
        return client

    ...


class TestConversationsCase(TestConversations):
    @ConversationsPreparer()
    @recorded_by_proxy
    def test_conversation_summarization(self, conversations_endpoint, conversations_key):
        conversation_client = self.create_client(conversations_endpoint, conversations_key)

        # Construct conversation input
        conversation_items = [
            TextConversationItem(
                id="1", participant_id="Agent_1", text="Hello, how can I help you?", role=ParticipantRole.AGENT
            ),
            TextConversationItem(
                id="2",
                participant_id="Customer_1",
                text="How to upgrade Office? I am getting error messages the whole day.",
                role=ParticipantRole.CUSTOMER,
            ),
            TextConversationItem(
                id="3",
                participant_id="Agent_1",
                text="Press the upgrade button please. Then sign in and follow the instructions.",
                role=ParticipantRole.AGENT,
            ),
        ]

        conversation_input = MultiLanguageConversationInput(
            conversations=[TextConversation(id="1", language="en", conversation_items=conversation_items)]
        )

        # Construct summarization actions
        actions = [
            SummarizationOperationAction(
                name="Issue task",
                action_content=ConversationSummarizationActionContent(summary_aspects=[SummaryAspect.ISSUE]),
            ),
            SummarizationOperationAction(
                name="Resolution task",
                action_content=ConversationSummarizationActionContent(summary_aspects=[SummaryAspect.RESOLUTION]),
            ),
        ]

        # Wrap into operation input
        operation_input = AnalyzeConversationOperationInput(
            conversation_input=conversation_input, actions=cast(List[AnalyzeConversationOperationAction], actions)
        )

        # ---- begin_* now returns AnalyzeConversationLROPoller[ItemPaged[ConversationActions]]
        poller: AnalyzeConversationLROPoller[ItemPaged[ConversationActions]] = (
            conversation_client.begin_analyze_conversation_job(body=operation_input)
        )

        # You can read operation id immediately (from initial response headers)
        print(f"Operation ID: {poller.details.get('operation_id')}")

        # Result is an ItemPaged[ConversationActions]
        paged_actions: ItemPaged[ConversationActions] = poller.result()

        # Final-state metadata is available after completion via poller.details
        d = poller.details
        print(f"Job ID: {d.get('job_id')}")
        print(f"Status: {d.get('status')}")
        print(f"Created: {d.get('created_date_time')}")
        print(f"Last Updated: {d.get('last_updated_date_time')}")
        if d.get("expiration_date_time"):
            print(f"Expires: {d.get('expiration_date_time')}")
        if d.get("display_name"):
            print(f"Display Name: {d.get('display_name')}")

        # Iterate items; each iteration yields a ConversationActions (your implementation pages by next_link)
        for actions_page in paged_actions:
            print(
                f"Completed: {actions_page.completed}, "
                f"In Progress: {actions_page.in_progress}, "
                f"Failed: {actions_page.failed}, "
                f"Total: {actions_page.total}"
            )

            for action_result in actions_page.task_results or []:
                print(f"\nAction Name: {getattr(action_result, 'name', None)}")
                print(f"Action Status: {getattr(action_result, 'status', None)}")
                print(f"Kind: {getattr(action_result, 'kind', None)}")

                if isinstance(action_result, SummarizationOperationResult):
                    for conversation in action_result.results.conversations:
                        print(f"  Conversation ID: {conversation.id}")
                        print("  Summaries:")
                        for summary in conversation.summaries:
                            print(f"    Aspect: {summary.aspect}")
                            print(f"    Text: {summary.text}")
                        if conversation.warnings:
                            print("  Warnings:")
                            for warning in conversation.warnings:
                                print(f"    Code: {warning.code}, Message: {warning.message}")
                else:
                    print("  [No supported results to display for this action type]")

        # Print errors (now exposed via poller.details from the final state)
        if d.get("errors"):
            print("\nErrors:")
            for error in d["errors"]:
                print(f"  Code: {error.code} - {error.message}")