1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
# Azure AI Language Question Answering Authoring client library for Python
The `azure-ai-language-questionanswering-authoring` package provides **authoring / management capabilities** for Azure AI Language Question Answering: create and configure projects, add knowledge sources, manage QnA pairs and synonyms, and deploy versions. Runtime (query) operations live in the separate `azure-ai-language-questionanswering` package.
> NOTE: This is a preview (`1.0.0b1`) targeting a preview service API version (`2025-05-15-preview`). APIs, models, and LRO result payloads may change before GA.
[Product documentation][product_docs]
## Getting started
### Prerequisites
- Python 3.9+ (preview requires 3.9 or later)
- An Azure subscription
- An Azure AI Language resource with Question Answering enabled (custom subdomain endpoint recommended for AAD)
### Install the package
```bash
pip install --pre azure-ai-language-questionanswering-authoring
```
Optional (for Azure Active Directory auth):
```bash
pip install azure-identity
```
### Authenticate the client
You can authenticate with:
1. Azure Active Directory via `DefaultAzureCredential` (recommended)
2. A resource key via `AzureKeyCredential` (quick start / local experimentation)
AAD example:
```python
from azure.identity import DefaultAzureCredential
from azure.ai.language.questionanswering.authoring import QuestionAnsweringAuthoringClient
endpoint = "https://<resource-name>.cognitiveservices.azure.com"
credential = DefaultAzureCredential()
client = QuestionAnsweringAuthoringClient(endpoint, credential)
```
Key credential example:
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.questionanswering.authoring import QuestionAnsweringAuthoringClient
client = QuestionAnsweringAuthoringClient(
endpoint="https://<resource-name>.cognitiveservices.azure.com",
credential=AzureKeyCredential("<api-key>")
)
```
## Key concepts
- **Project**: A logical container for your knowledge sources, QnA pairs, synonyms, and deployments.
- **Knowledge Source**: A URL/file describing content from which QnA pairs can be extracted.
- **QnA Record**: A question and its answer plus metadata/alternative questions.
- **Synonyms**: Word alteration groups to normalize variations in user questions.
- **Deployment**: A named (e.g., `production`) deployed snapshot of your project used by runtime clients.
- **Long‑running operation (LRO)**: Certain operations (update sources/QnAs, import, export, deploy) return an `LROPoller`. In the current preview these resolve to `None`—treat `.result()` strictly as a completion signal.
## Examples
Below are minimal synchronous examples. More complete samples (including async equivalents) are in the samples directory. Environment variables used by samples: `AZURE_QUESTIONANSWERING_ENDPOINT`, `AZURE_QUESTIONANSWERING_KEY`.
### Create a project
```python
metadata = {
"language": "en",
"description": "FAQ project",
"settings": {"defaultAnswer": "no answer"},
"multilingualResource": True,
}
client.create_project(project_name="FAQ", body=metadata)
```
### List projects
```python
for proj in client.list_projects():
print(proj.get("projectName"), proj.get("lastModifiedDateTime"))
```
### Add / update a knowledge source
```python
from azure.ai.language.questionanswering.authoring.models import UpdateSourceRecord,UpdateQnaSourceRecord
poller = client.begin_update_sources(
project_name="FAQ",
body=[
UpdateSourceRecord(
op="add",
value=UpdateQnaSourceRecord(
display_name="ContosoFAQ",
source="https://contoso.com/faq",
source_uri="https://contoso.com/faq",
source_kind="url",
content_structure_kind="unstructured",
refresh=False,
),
)
],
)
poller.result()
```
### Add a QnA pair
```python
from azure.ai.language.questionanswering.authoring.models import UpdateQnaRecord,QnaRecord
poller = client.begin_update_qnas(
project_name="FAQ",
body=[
UpdateQnaRecord(
op="add",
value=QnaRecord(
id=1,
answer="Use the Azure SDKs.",
source="manual",
questions=["How do I use Azure services in .NET?"],
),
)
],
)
poller.result()
```
### Set synonyms
```python
from azure.ai.language.questionanswering.authoring.models import SynonymAssets,WordAlterations
client.update_synonyms(
project_name="FAQ",
body=SynonymAssets(
value=[
WordAlterations(alterations=["qnamaker", "qna maker"]),
WordAlterations(alterations=["qna", "question and answer"]),
]
),
)
```
### Deploy
```python
client.begin_deploy_project(project_name="FAQ", deployment_name="production").result()
```
### Export / Import
```python
export_poller = client.begin_export(project_name="FAQ", format="json")
export_poller.result() # current preview returns None
from azure.ai.language.questionanswering.authoring.models import ImportJobOptions,Assets,ImportQnaRecord
assets = ImportJobOptions(
assets=Assets(
qnas=[
ImportQnaRecord(
id=1,
answer="Example answer",
source="https://contoso.com/faq",
questions=["Example question?"],
)
]
)
)
client.begin_import_assets(project_name="FAQ", body=assets, format="json").result()
```
## Troubleshooting
### Errors
Service errors raise `HttpResponseError` (or subclasses) from `azure-core`. Check the `.status_code` / `.message` for details.
```python
from azure.core.exceptions import HttpResponseError
try:
client.list_projects()
except HttpResponseError as e:
print("Request failed:", e.message)
```
### Logging
Enable basic logging:
```python
import logging
logging.basicConfig(level=logging.INFO)
```
For request/response details set environment variable `AZURE_LOG_LEVEL=info` or pass `logging_enable=True` per operation.
## Next steps
- Explore the full samples
- Learn about Question Answering concepts in [product documentation][product_docs]
## Contributing
See [CONTRIBUTING.md][contributing] for instructions on building, testing, and contributing.
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit <https://cla.microsoft.com>.
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct][code_of_conduct]. For more information see the [Code of Conduct FAQ][coc_faq] or contact <mailto:opencode@microsoft.com> with any additional questions or comments.
<!-- LINKS -->
[product_docs]: https://learn.microsoft.com/azure/ai-services/language-service/question-answering/overview
[contributing]: https://github.com/Azure/azure-sdk-for-python/blob/main/CONTRIBUTING.md
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[coc_faq]: https://opensource.microsoft.com/codeofconduct/faq/
|