File: _patch.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (350 lines) | stat: -rw-r--r-- 16,163 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# pylint: disable=line-too-long,useless-suppression
# coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# --------------------------------------------------------------------------
"""Customize generated code here.

Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize
"""
import json
from typing import Any, Callable, Dict, IO, Mapping, Optional, TypeVar, Union, cast, overload, Generic, TYPE_CHECKING
from collections.abc import MutableMapping  # pylint:disable=import-error
from urllib.parse import urlparse

from azure.core.exceptions import HttpResponseError
from azure.core.pipeline import PipelineResponse
from azure.core.polling import LROPoller, NoPolling, PollingMethod
from azure.core.polling.base_polling import LROBasePolling
from azure.core.rest import HttpRequest, HttpResponse
from azure.core.tracing.decorator import distributed_trace
from azure.core.utils import case_insensitive_dict
from azure.core.credentials import AzureKeyCredential
from azure.core.paging import ItemPaged

from ._client import TextAnalysisClient as AnalysisTextClientGenerated
from . import models as _models
from .models import AnalyzeTextOperationState, TextActions  # convenience re-exports if present
from ._utils.serialization import Serializer

if TYPE_CHECKING:
    from azure.core.credentials import TokenCredential

JSON = MutableMapping[str, Any]
_Unset: Any = object()
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]

_SERIALIZER = Serializer()
_SERIALIZER.client_side_validation = False


def _parse_operation_id(op_loc: Optional[str]) -> Optional[str]:
    """Extract the operation ID from an Operation-Location URL.

    :param op_loc: The ``Operation-Location`` header value or URL to parse.
        If ``None`` or malformed, no ID can be extracted.
    :type op_loc: Optional[str]
    :return: The trailing path segment as the operation ID, or ``None`` if not found.
    :rtype: Optional[str]
    """
    if not op_loc:
        return None
    path = urlparse(op_loc).path.rstrip("/")
    if "/" not in path:
        return None
    return path.rsplit("/", 1)[-1]


PollingReturnType_co = TypeVar("PollingReturnType_co", covariant=True)


class AnalyzeTextLROPoller(LROPoller[PollingReturnType_co], Generic[PollingReturnType_co]):
    """Custom poller that returns PollingReturnType_co and exposes operation metadata."""

    def __init__(self, *args: Any, **kwargs: Any) -> None:
        super().__init__(*args, **kwargs)
        self._last_state: Optional[AnalyzeTextOperationState] = None  # set by deserializer

    # internal: called by the deserializer to update details()
    def _record_state_for_details(self, state: AnalyzeTextOperationState) -> None:
        self._last_state = state

    @property
    def details(self) -> Mapping[str, Any]:
        """Metadata associated with the long-running operation.

        :return: A mapping with keys like ``operation_id`` and, when available,
            ``status``, ``job_id``, ``display_name``, ``created_at``,
            ``last_updated_at``, ``expires_on``, ``statistics``,
            ``errors``, and ``next_link``.
        :rtype: Mapping[str, Any]
        """
        try:
            headers = getattr(self.polling_method(), "_initial_response").http_response.headers  # type: ignore[attr-defined]
            op_loc = headers.get("Operation-Location") or headers.get("operation-location")
        except (AttributeError, TypeError):
            op_loc = None

        info: Dict[str, Any] = {"operation_id": _parse_operation_id(op_loc)}
        if self._last_state is not None:
            s = self._last_state
            info.update(
                {
                    "status": s.status,
                    "job_id": s.job_id,
                    "display_name": s.display_name,
                    "created_at": s.created_at,
                    "last_updated_at": s.last_updated_at,
                    "expires_on": s.expires_on,
                    "statistics": s.statistics,
                    "errors": s.errors,
                    "next_link": s.next_link,
                }
            )
        return info

    @classmethod
    def from_continuation_token(
        cls,
        polling_method: PollingMethod[PollingReturnType_co],
        continuation_token: str,
        **kwargs: Any,
    ) -> "AnalyzeTextLROPoller[PollingReturnType_co]":
        client, initial_response, deserialization_callback = polling_method.from_continuation_token(
            continuation_token, **kwargs
        )
        return cls(client, initial_response, deserialization_callback, polling_method)


class TextAnalysisClient(AnalysisTextClientGenerated):
    def __init__(
        self,
        endpoint: str,
        credential: Union[AzureKeyCredential, "TokenCredential"],
        *,
        api_version: Optional[str] = None,
        **kwargs: Any,
    ) -> None:
        """Create a TextAnalysisClient.
        :param endpoint: Supported Cognitive Services endpoint.
        :type endpoint: str
        :param credential: Key or token credential.
        :type credential: ~azure.core.credentials.AzureKeyCredential or ~azure.core.credentials.TokenCredential
        :keyword api_version: The API version to use for this operation. Default value is
        "2025-05-15-preview". Note that overriding this default value may result in unsupported
        behavior.
        :paramtype api_version: str`
        """
        if api_version is not None:
            kwargs["api_version"] = api_version
        super().__init__(endpoint=endpoint, credential=credential, **kwargs)

    @overload
    def begin_analyze_text_job(
        self,
        *,
        text_input: _models.MultiLanguageTextInput,
        actions: list[_models.AnalyzeTextOperationAction],
        content_type: str = "application/json",
        display_name: Optional[str] = None,
        default_language: Optional[str] = None,
        cancel_after: Optional[float] = None,
        **kwargs: Any,
    ) -> AnalyzeTextLROPoller[ItemPaged["TextActions"]]:
        """Submit a collection of text documents for analysis. Specify one or more unique tasks to be
        executed as a long-running operation.

        :keyword text_input: Contains the input to be analyzed. Required.
        :paramtype text_input: ~azure.ai.textanalytics.models.MultiLanguageTextInput
        :keyword actions: List of tasks to be performed as part of the LRO. Required.
        :paramtype actions: list[~azure.ai.textanalytics.models.AnalyzeTextOperationAction]
        :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
         Default value is "application/json".
        :paramtype content_type: str
        :keyword display_name: Name for the task. Default value is None.
        :paramtype display_name: str
        :keyword default_language: Default language to use for records requesting automatic language
         detection. Default value is None.
        :paramtype default_language: str
        :keyword cancel_after: Optional duration in seconds after which the job will be canceled if not
         completed. Default value is None.
        :paramtype cancel_after: float
        :return: A poller whose ``result()`` yields ``ItemPaged[TextActions]`` and exposes metadata via ``.details``.
        :rtype: ~azure.ai.textanalytics.AnalyzeTextLROPoller[
                ~azure.core.paging.ItemPaged[~azure.ai.textanalytics.models.TextActions]]
        :raises ~azure.core.exceptions.HttpResponseError:
        """

    @overload
    def begin_analyze_text_job(
        self, body: JSON, *, content_type: str = "application/json", **kwargs: Any
    ) -> AnalyzeTextLROPoller[ItemPaged["TextActions"]]:
        """Submit a collection of text documents for analysis. Specify one or more unique tasks to be
        executed as a long-running operation.

        :param body: Required.
        :type body: JSON
        :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
         Default value is "application/json".
        :paramtype content_type: str
        :return: A poller whose ``result()`` yields ``ItemPaged[TextActions]`` and exposes metadata via ``.details``.
        :rtype: ~azure.ai.textanalytics.AnalyzeTextLROPoller[
                ~azure.core.paging.ItemPaged[~azure.ai.textanalytics.models.TextActions]]
        :raises ~azure.core.exceptions.HttpResponseError:
        """

    @overload
    def begin_analyze_text_job(
        self, body: IO[bytes], *, content_type: str = "application/json", **kwargs: Any
    ) -> AnalyzeTextLROPoller[ItemPaged["TextActions"]]:
        """Submit a collection of text documents for analysis. Specify one or more unique tasks to be
        executed as a long-running operation.

        :param body: Required.
        :type body: IO[bytes]
        :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
         Default value is "application/json".
        :paramtype content_type: str
        :return: A poller whose ``result()`` yields ``ItemPaged[TextActions]`` and exposes metadata via ``.details``.
        :rtype: ~azure.ai.textanalytics.AnalyzeTextLROPoller[
                ~azure.core.paging.ItemPaged[~azure.ai.textanalytics.models.TextActions]]
        :raises ~azure.core.exceptions.HttpResponseError:
        """

    @distributed_trace
    def begin_analyze_text_job(  # type: ignore[override]
        self,
        body: Union[JSON, IO[bytes]] = _Unset,
        *,
        text_input: _models.MultiLanguageTextInput = _Unset,
        actions: list[_models.AnalyzeTextOperationAction] = _Unset,
        display_name: Optional[str] = None,
        default_language: Optional[str] = None,
        cancel_after: Optional[float] = None,
        **kwargs: Any,
    ) -> AnalyzeTextLROPoller[ItemPaged["TextActions"]]:
        """Submit a collection of text documents for analysis. Specify one or more unique tasks to be
        executed as a long-running operation.

        :param body: Is either a JSON type or a IO[bytes] type. Required.
        :type body: JSON or IO[bytes]
        :keyword text_input: Contains the input to be analyzed. Required.
        :paramtype text_input: ~azure.ai.textanalytics.models.MultiLanguageTextInput
        :keyword actions: List of tasks to be performed as part of the LRO. Required.
        :paramtype actions: list[~azure.ai.textanalytics.models.AnalyzeTextOperationAction]
        :keyword display_name: Name for the task. Default value is None.
        :paramtype display_name: str
        :keyword default_language: Default language to use for records requesting automatic language
         detection. Default value is None.
        :paramtype default_language: str
        :keyword cancel_after: Optional duration in seconds after which the job will be canceled if not
         completed. Default value is None.
        :paramtype cancel_after: float
        :return: A poller whose ``result()`` yields ``ItemPaged[TextActions]`` and exposes metadata via ``.details``.
        :rtype: ~azure.ai.textanalytics.AnalyzeTextLROPoller[
                ~azure.core.paging.ItemPaged[~azure.ai.textanalytics.models.TextActions]]
        :raises ~azure.core.exceptions.HttpResponseError:
        """
        _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
        _params = kwargs.pop("params", {}) or {}

        content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
        polling: Union[bool, PollingMethod[ItemPaged["TextActions"]]] = kwargs.pop("polling", True)
        lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
        cont_token: Optional[str] = kwargs.pop("continuation_token", None)
        cls: ClsType[ItemPaged["TextActions"]] = kwargs.pop("cls", None)
        kwargs.pop("error_map", None)

        path_format_arguments = {
            "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True),
        }

        def _fetch_state_by_next_link(next_link: str) -> AnalyzeTextOperationState:
            req = HttpRequest("GET", next_link)
            resp = self._client.send_request(req)  # type: ignore[attr-defined]
            if resp.status_code != 200:
                raise HttpResponseError(response=resp)
            data = json.loads(resp.text())
            return AnalyzeTextOperationState(data)

        def _build_pager_from_state(state: AnalyzeTextOperationState) -> ItemPaged["TextActions"]:
            def extract_data(s: AnalyzeTextOperationState):
                next_link = s.next_link
                actions_payload: TextActions = s.actions
                return next_link, [actions_payload]

            def get_next(token: Optional[str]) -> Optional[AnalyzeTextOperationState]:
                if token is None:  # First call → return the initial state
                    return state
                if not token:  # No nextLink → stop iteration
                    return None
                return _fetch_state_by_next_link(token)  # Fetch next page

            return ItemPaged(get_next, extract_data)

        poller_holder: Dict[str, AnalyzeTextLROPoller[ItemPaged["TextActions"]]] = {}

        def get_long_running_output(pipeline_response: PipelineResponse[HttpRequest, HttpResponse]):
            final_response = pipeline_response.http_response
            if final_response.status_code == 200:
                data = json.loads(final_response.text())
                op_state = AnalyzeTextOperationState(data)
                poller_ref = poller_holder["poller"]
                poller_ref._record_state_for_details(op_state)  # pylint: disable=protected-access
                paged = _build_pager_from_state(op_state)
                return cls(pipeline_response, paged, {}) if cls else paged
            raise HttpResponseError(response=final_response)

        if polling is True:
            polling_method: PollingMethod[ItemPaged["TextActions"]] = cast(
                PollingMethod[ItemPaged["TextActions"]],
                LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs),
            )
        elif polling is False:
            polling_method = cast(PollingMethod[ItemPaged["TextActions"]], NoPolling())
        else:
            polling_method = cast(PollingMethod[ItemPaged["TextActions"]], polling)

        if cont_token:
            return AnalyzeTextLROPoller[ItemPaged["TextActions"]].from_continuation_token(
                polling_method=polling_method,
                continuation_token=cont_token,
            )

        initial_kwargs = dict(  # pylint:disable=use-dict-literal
            text_input=text_input,
            actions=actions,
            display_name=display_name,
            default_language=default_language,
            cancel_after=cancel_after,
            content_type=content_type,
            cls=lambda x, y, z: x,  # passthrough raw pipeline response
            headers=_headers,
            params=_params,
            **kwargs,
        )
        if body is not _Unset and body is not None:
            initial_kwargs["body"] = body

        raw_result = self._analyze_text_job_initial(**initial_kwargs)
        raw_result.http_response.read()  # type: ignore[attr-defined]

        lro: AnalyzeTextLROPoller[ItemPaged["TextActions"]] = AnalyzeTextLROPoller(
            self._client, raw_result, get_long_running_output, polling_method
        )
        poller_holder["poller"] = lro
        return lro


def patch_sdk():
    """Do not remove from this file.

    `patch_sdk` is a last resort escape hatch that allows you to do customizations
    you can't accomplish using the techniques described in
    https://aka.ms/azsdk/python/dpcodegen/python/customize
    """


__all__ = ["TextAnalysisClient", "AnalyzeTextLROPoller"]