File: sample_analyze_healthcare_entities_async.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (150 lines) | stat: -rw-r--r-- 5,387 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_analyze_healthcare_entities_async.py

DESCRIPTION:
    This sample demonstrates how to run a **healthcare** action over text (async LRO).

USAGE:
    python sample_analyze_healthcare_entities_async.py

REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
    AZURE_TEXT_ENDPOINT
    AZURE_CLIENT_ID
    AZURE_TENANT_ID
    AZURE_CLIENT_SECRET

NOTE:
    If you want to use AzureKeyCredential instead, set:
      - AZURE_TEXT_ENDPOINT
      - AZURE_TEXT_KEY
"""

# [START analyze_healthcare_entities_async]
import os
import asyncio

from azure.identity.aio import DefaultAzureCredential
from azure.ai.textanalytics.aio import TextAnalysisClient
from azure.ai.textanalytics.models import (
    MultiLanguageTextInput,
    MultiLanguageInput,
    AnalyzeTextOperationAction,
    HealthcareLROTask,
    HealthcareLROResult,
)


async def sample_analyze_healthcare_entities_async():
    # get settings
    endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
    credential = DefaultAzureCredential()

    async with TextAnalysisClient(endpoint, credential=credential) as client:
        # Build input
        text_a = "Prescribed 100mg ibuprofen, taken twice daily."

        text_input = MultiLanguageTextInput(
            multi_language_inputs=[
                MultiLanguageInput(id="A", text=text_a, language="en"),
            ]
        )

        actions: list[AnalyzeTextOperationAction] = [
            HealthcareLROTask(name="Healthcare Operation"),
        ]

        # Start long-running operation (async) – poller returns AsyncItemPaged[TextActions]
        poller = await client.begin_analyze_text_job(
            text_input=text_input,
            actions=actions,
        )

        # Operation metadata (pre-final)
        print(f"Operation ID: {poller.details.get('operation_id')}")

        # Wait for completion and get AsyncItemPaged of TextActions
        paged_actions = await poller.result()

        # Final-state metadata
        d = poller.details
        print(f"Job ID: {d.get('job_id')}")
        print(f"Status: {d.get('status')}")
        print(f"Created: {d.get('created_date_time')}")
        print(f"Last Updated: {d.get('last_updated_date_time')}")
        if d.get("expiration_date_time"):
            print(f"Expires: {d.get('expiration_date_time')}")
        if d.get("display_name"):
            print(f"Display Name: {d.get('display_name')}")
        if d.get("errors"):
            print("\nErrors:")
            for err in d["errors"]:
                print(f"  Code: {err.code} - {err.message}")

        # Iterate results (async pageable)
        async for actions_page in paged_actions:
            print(
                f"Completed: {actions_page.completed}, "
                f"In Progress: {actions_page.in_progress}, "
                f"Failed: {actions_page.failed}, "
                f"Total: {actions_page.total}"
            )

            for op_result in actions_page.items_property or []:
                if isinstance(op_result, HealthcareLROResult):
                    print(f"\nAction Name: {op_result.task_name}")
                    print(f"Action Status: {op_result.status}")
                    print(f"Kind: {op_result.kind}")

                    hc_result = op_result.results
                    for doc in hc_result.documents or []:
                        print(f"\nDocument ID: {doc.id}")

                        # Entities
                        print("Entities:")
                        for entity in doc.entities or []:
                            print(f"  Text: {entity.text}")
                            print(f"  Category: {entity.category}")
                            print(f"  Offset: {entity.offset}")
                            print(f"  Length: {entity.length}")
                            print(f"  Confidence score: {entity.confidence_score}")
                            if entity.links:
                                for link in entity.links:
                                    print(f"    Link ID: {link.id}")
                                    print(f"    Data source: {link.data_source}")
                            print()

                        # Relations
                        print("Relations:")
                        for relation in doc.relations or []:
                            print(f"  Relation type: {relation.relation_type}")
                            for rel_entity in relation.entities or []:
                                print(f"    Role: {rel_entity.role}")
                                print(f"    Ref: {rel_entity.ref}")
                            print()
                else:
                    # Other action kinds, if present
                    try:
                        print(
                            f"\n[Other action] name={op_result.task_name}, "
                            f"status={op_result.status}, kind={op_result.kind}"
                        )
                    except Exception:
                        print("\n[Other action present]")


# [END analyze_healthcare_entities_async]


async def main():
    await sample_analyze_healthcare_entities_async()


if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())