File: sample_analyze_sentiment_async.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (103 lines) | stat: -rw-r--r-- 3,483 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_analyze_sentiment_async.py

DESCRIPTION:
    This sample demonstrates how to run **sentiment analysis** over text (async).

USAGE:
    python sample_analyze_sentiment_async.py

REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
    AZURE_TEXT_ENDPOINT
    AZURE_CLIENT_ID
    AZURE_TENANT_ID
    AZURE_CLIENT_SECRET

NOTE:
    If you want to use AzureKeyCredential instead, set:
      - AZURE_TEXT_ENDPOINT
      - AZURE_TEXT_KEY
"""

# [START analyze_sentiment_async]
import os
import asyncio

from azure.identity.aio import DefaultAzureCredential
from azure.ai.textanalytics.aio import TextAnalysisClient
from azure.ai.textanalytics.models import (
    MultiLanguageTextInput,
    MultiLanguageInput,
    TextSentimentAnalysisInput,
    AnalyzeTextSentimentResult,
)


async def sample_analyze_sentiment_async():
    # settings
    endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
    credential = DefaultAzureCredential()

    async with TextAnalysisClient(endpoint, credential=credential) as client:
        # input
        text_a = (
            "The food and service were unacceptable, but the concierge were nice. "
            "After talking to them about the quality of the food and the process to get room service "
            "they refunded the money we spent at the restaurant and gave us a voucher for nearby restaurants."
        )

        body = TextSentimentAnalysisInput(
            text_input=MultiLanguageTextInput(
                multi_language_inputs=[MultiLanguageInput(id="A", text=text_a, language="en")]
            )
        )

        # Async (non-LRO) call
        result = await client.analyze_text(body=body)

        # Print results
        if isinstance(result, AnalyzeTextSentimentResult) and result.results and result.results.documents:
            for doc in result.results.documents:
                print(f"\nDocument ID: {doc.id}")
                print(f"Overall sentiment: {doc.sentiment}")
                if doc.confidence_scores:
                    print("Confidence scores:")
                    print(f"  positive={doc.confidence_scores.positive}")
                    print(f"  neutral={doc.confidence_scores.neutral}")
                    print(f"  negative={doc.confidence_scores.negative}")

                if doc.sentences:
                    print("\nSentence sentiments:")
                    for s in doc.sentences:
                        print(f"  Text: {s.text}")
                        print(f"  Sentiment: {s.sentiment}")
                        if s.confidence_scores:
                            print(
                                "  Scores: "
                                f"pos={s.confidence_scores.positive}, "
                                f"neu={s.confidence_scores.neutral}, "
                                f"neg={s.confidence_scores.negative}"
                            )
                        print(f"  Offset: {s.offset}, Length: {s.length}\n")
                else:
                    print("No sentence-level results returned.")
        else:
            print("No documents in the response or unexpected result type.")


# [END analyze_sentiment_async]


async def main():
    await sample_analyze_sentiment_async()


if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())